Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (328) Expression Attributions Wiki
XB-ANAT-452

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Combinatorial diffusion assay used to identify topically active melanocyte-stimulating hormone receptor antagonists., Quillan JM., Proc Natl Acad Sci U S A. March 28, 1995; 92 (7): 2894-8.            


Mapping the melatonin receptor. 3. Design and synthesis of melatonin agonists and antagonists derived from 2-phenyltryptamines., Garratt PJ., J Med Chem. March 31, 1995; 38 (7): 1132-9.


Molecular probing of the secretory pathway in peptide hormone-producing cells., Holthuis JC., J Cell Sci. October 1, 1995; 108 ( Pt 10) 3295-305.


Background adaptation and synapse plasticity in the pars intermedia of Xenopus laevis., Berghs CA., Neuroscience. February 1, 1996; 70 (3): 833-41.


Neural crest cell migration and pigment pattern formation in urodele amphibians., Epperlein HH., Int J Dev Biol. February 1, 1996; 40 (1): 229-38.


Melanophore pigment dispersion responses to agonists show two patterns of sensitivity to inhibitors of cAMP-dependent protein kinase and protein kinase C., McClintock TS., J Cell Physiol. April 1, 1996; 167 (1): 1-7.


Synthesis and characterization of bivalent peptide ligands targeted to G-protein-coupled receptors., Carrithers MD., Chem Biol. July 1, 1996; 3 (7): 537-42.


Cloning and sequence analysis of a hypothalamic cDNA encoding a D1c dopamine receptor in tilapia., Lamers AE., Biochim Biophys Acta. July 31, 1996; 1308 (1): 17-22.


Synthesis of 2-amido-2,3-dihydro-1H-phenalene derivatives as new conformationally restricted ligands for melatonin receptors., Mathé-Allainmat M., J Med Chem. August 2, 1996; 39 (16): 3089-95.


Analogues of diverse structure are unable to differentiate native melatonin receptors in the chicken retina, sheep pars tuberalis and Xenopus melanophores., Pickering H., Br J Pharmacol. September 1, 1996; 119 (2): 379-87.


Light-sensitive response in melanophores of Xenopus laevis: I. Spectral characteristics of melanophore response in isolated tail fin of Xenopus tadpole., Moriya T., J Exp Zool. September 1, 1996; 276 (1): 11-8.


Light-sensitive response in melanophores of Xenopus laevis: II.Rho is involved in light-induced melanin aggregation., Miyashita Y., J Exp Zool. October 1, 1996; 276 (2): 125-31.


The cellular patterns of BDNF and trkB expression suggest multiple roles for BDNF during Xenopus visual system development., Cohen-Cory S., Dev Biol. October 10, 1996; 179 (1): 102-15.              


Regulated bidirectional motility of melanophore pigment granules along microtubules in vitro., Rogers SL., Proc Natl Acad Sci U S A. April 15, 1997; 94 (8): 3720-5.        


Physiologically induced Fos expression in the hypothalamo-hypophyseal system of Xenopus laevis., Ubink R., Neuroendocrinology. June 1, 1997; 65 (6): 413-22.


Immunocytochemical localization of prohormone convertases PC1 and PC2 in the anuran pituitary gland: subcellular localization in corticotrope and melanotrope cells., Kurabuchi S., Cell Tissue Res. June 1, 1997; 288 (3): 485-96.


Novel isoforms of Mel1c melatonin receptors modulating intracellular cyclic guanosine 3',5'-monophosphate levels., Jockers R., Mol Endocrinol. July 1, 1997; 11 (8): 1070-81.


Sauvagine and TRH differentially stimulate proopiomelanocortin biosynthesis in the Xenopus laevis intermediate pituitary., Dotman CH., Neuroendocrinology. August 1, 1997; 66 (2): 106-13.


Deciphering posttranslational processing events in the pituitary of a neopterygian fish: cloning of a gar proopiomelanocortin cDNA., Dores RM., Gen Comp Endocrinol. September 1, 1997; 107 (3): 401-13.


Background adaptation by Xenopus laevis: a model for studying neuronal information processing in the pituitary pars intermedia., Roubos EW., Comp Biochem Physiol A Physiol. November 1, 1997; 118 (3): 533-50.


Functional analysis by imaging of melanophore pigment dispersion of chimeric receptors constructed by recombinant polymerase chain reaction., McClintock TS., Brain Res Brain Res Protoc. December 1, 1997; 2 (1): 59-68.


In vitro motility assay for melanophore pigment organelles., Rogers SL., Methods Enzymol. January 1, 1998; 298 361-72.


Functional screening of multiuse peptide libraries using melanophore bioassay., Jayawickreme CK., Methods Mol Biol. January 1, 1998; 87 119-28.


Paraxial-fated mesoderm is required for neural crest induction in Xenopus embryos., Bonstein L., Dev Biol. January 15, 1998; 193 (2): 156-68.            


Interaction of Agouti protein with the melanocortin 1 receptor in vitro and in vivo., Ollmann MM., Genes Dev. February 1, 1998; 12 (3): 316-30.


Mapping the melatonin receptor. 5. Melatonin agonists and antagonists derived from tetrahydrocyclopent[b]indoles, tetrahydrocarbazoles and hexahydrocyclohept[b]indoles., Davies DJ., J Med Chem. February 12, 1998; 41 (4): 451-67.


Distribution of pro-opiomelanocortin and its peptide end products in the brain and hypophysis of the aquatic toad, Xenopus laevis., Tuinhof R., Cell Tissue Res. May 1, 1998; 292 (2): 251-65.


Identification of suprachiasmatic melanotrope-inhibiting neurons in Xenopus laevis: a confocal laser-scanning microscopy study., Ubink R., J Comp Neurol. July 20, 1998; 397 (1): 60-8.          


Regulation of organelle movement in melanophores by protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2A (PP2A)., Reilein AR., J Cell Biol. August 10, 1998; 142 (3): 803-13.            


Cloning and expression of two proopiomelanocortin mRNAs in the common carp (Cyprinus carpio L.)., Arends RJ., Mol Cell Endocrinol. August 25, 1998; 143 (1-2): 23-31.


The melanogenic system of Xenopus laevis., Zuasti A., Arch Histol Cytol. October 1, 1998; 61 (4): 305-16.


Dynamics of proopiomelanocortin and prohormone convertase 2 gene expression in Xenopus melanotrope cells during long-term background adaptation., Dotman CH., J Endocrinol. November 1, 1998; 159 (2): 281-6.


Molecular characterization and expression of cloned human galanin receptors GALR2 and GALR3., Kolakowski LF., J Neurochem. December 1, 1998; 71 (6): 2239-51.


Heterotrimeric kinesin II is the microtubule motor protein responsible for pigment dispersion in Xenopus melanophores., Tuma MC., J Cell Biol. December 14, 1998; 143 (6): 1547-58.            


Amphibian Melanophore Technology as a Functional Screen for Antagonists of G-Protein Coupled 7-Transmembrane Receptors., Nuttall ME., J Biomol Screen. January 1, 1999; 4 (5): 269-278.


Design of subtype selective melatonin receptor agonists and antagonists., Sugden D., Reprod Nutr Dev. January 1, 1999; 39 (3): 335-44.


Cloning of a novel G-protein-coupled receptor GPR 51 resembling GABAB receptors expressed predominantly in nervous tissues and mapped proximal to the hereditary sensory neuropathy type 1 locus on chromosome 9., Ng GY., Genomics. March 15, 1999; 56 (3): 288-95.


Identification of a GABAB receptor subunit, gb2, required for functional GABAB receptor activity., Ng GY., J Biol Chem. March 19, 1999; 274 (12): 7607-10.


Functional characterization of a receptor for vasoactive-intestinal-peptide-related peptides in cultured dermal melanophores from Xenopus laevis., Marotti LA., Pigment Cell Res. April 1, 1999; 12 (2): 89-97.


Molecular cloning and characterization of the chicken pro-opiomelanocortin (POMC) gene., Takeuchi S., Biochim Biophys Acta. July 8, 1999; 1450 (3): 452-9.


Adrenomedullin in nonmammalian vertebrate pancreas: an immunocytochemical study., López J., Gen Comp Endocrinol. September 1, 1999; 115 (3): 309-22.          


Characterization of the cloned guinea pig leukotriene B4 receptor: comparison to its human orthologue., Boie Y., Eur J Pharmacol. September 10, 1999; 380 (2-3): 203-13.


Regulation of melanosome movement in the cell cycle by reversible association with myosin V., Rogers SL., J Cell Biol. September 20, 1999; 146 (6): 1265-76.              


Effect of colcemid on the centrosome and microtubules in dermal melanophores of Xenopus laevis larvae in vivo., Rubin KA., Cell Mol Biol (Noisy-le-grand). November 1, 1999; 45 (7): 1099-117.


Effects of regulators of G protein-signaling proteins on the functional response of the mu-opioid receptor in a melanophore-based assay., Potenza MN., J Pharmacol Exp Ther. November 1, 1999; 291 (2): 482-91.


Pharmacological characterization of receptor-activity-modifying proteins (RAMPs) and the human calcitonin receptor., Armour SL., J Pharmacol Toxicol Methods. December 1, 1999; 42 (4): 217-24.


Use of a cell-based, lawn format assay to rapidly screen a 442,368 bead-based peptide library., Jayawickreme CK., J Pharmacol Toxicol Methods. December 1, 1999; 42 (4): 189-97.


Melanophore lineage and clonal organization of the epidermis in Xenopus embryos as revealed by expression of a biogenic marker, GFP., Fukuzawa T., Pigment Cell Res. June 1, 2000; 13 (3): 151-7.


Serological cloning of a melanocyte rab guanosine 5'-triphosphate-binding protein and a chromosome condensation protein from a melanoma complementary DNA library., Jäger D., Cancer Res. July 1, 2000; 60 (13): 3584-91.


Melanization stimulating factors in the integument of the Mugil cephalus and Dicertranchus labrax., Zuasti A., Histol Histopathol. October 1, 2000; 15 (4): 1145-50.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???