Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (553) Expression Attributions Wiki
XB-ANAT-33

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Histological development of the cement gland in Xenopus laevis: a light microscopic study., Lyerla TA., J Morphol. December 1, 1973; 141 (4): 491-501.


The cement gland of Xenopus laevis as an experimental model for embryonic differentiation. III. Histochemical and ultrastructural studies on cement glands differentiated in vitro., Picard JJ., Arch Biol (Liege). January 1, 1975; 86 (2): 129-38.


Xenopus laevis cement gland as an experimental model for embryonic differentiation. II. The competence of embryonic cells., Picard JJ., J Embryol Exp Morphol. July 1, 1975; 33 (4): 969-78.


Xenopus laevis cement gland as an experimental model for embryonic differentiation. I. In vitro stimulation of differentiation by ammonium chloride., Picard JJ., J Embryol Exp Morphol. July 1, 1975; 33 (4): 957-67.


Anatomy, physiology and behavioural rôle of sensory nerve endings in the cement gland of embryonic xenopus., Roberts A., Proc R Soc Lond B Biol Sci. December 31, 1975; 192 (1106): 111-27.


Utrastructure of the cement gland of Xenopus laevis., Picard JJ., J Morphol. February 1, 1976; 148 (2): 193-208.


Surface changes during development and involution of the cement gland of Xenopus laevis., Van Evercooren A., Cell Tissue Res. November 20, 1978; 194 (2): 303-13.


The development of the peripheral trigeminal innervation in Xenopus embryos., Davies SN., J Embryol Exp Morphol. August 1, 1982; 70 215-24.


Expression of an epidermal antigen used to study tissue induction in the early Xenopus laevis embryo., Akers RM., Science. February 7, 1986; 231 (4738): 613-6.


Fates of the blastomeres of the 32-cell-stage Xenopus embryo., Moody SA., Dev Biol. August 1, 1987; 122 (2): 300-19.      


The organization of mesodermal pattern in Xenopus laevis: experiments using a Xenopus mesoderm-inducing factor., Cooke J., Development. December 1, 1987; 101 (4): 893-908.            


The restrictive effect of early exposure to lithium upon body pattern in Xenopus development, studied by quantitative anatomy and immunofluorescence., Cooke J., Development. January 1, 1988; 102 (1): 85-99.          


The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos., Kao KR., Dev Biol. May 1, 1988; 127 (1): 64-77.                      


The expression of epidermal antigens in Xenopus laevis., Itoh K., Development. September 1, 1988; 104 (1): 1-14.                        


A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus., Dent JA., Development. January 1, 1989; 105 (1): 61-74.                      


Differential gene expression in the anterior neural plate during gastrulation of Xenopus laevis., Jamrich M., Development. April 1, 1989; 105 (4): 779-86.            


Lithium-induced teratogenesis in frog embryos prevented by a polyphosphoinositide cycle intermediate or a diacylglycerol analog., Busa WB., Dev Biol. April 1, 1989; 132 (2): 315-24.


Hyperdorsoanterior embryos from Xenopus eggs treated with D2O., Scharf SR., Dev Biol. July 1, 1989; 134 (1): 175-88.


Progressive determination during formation of the anteroposterior axis in Xenopus laevis., Sive HL., Cell. July 14, 1989; 58 (1): 171-80.


The appearance of acetylated alpha-tubulin during early development and cellular differentiation in Xenopus., Chu DT., Dev Biol. November 1, 1989; 136 (1): 104-17.                  


Segregation of fate during cleavage of frog (Xenopus laevis) blastomeres., Moody SA., Anat Embryol (Berl). January 1, 1990; 182 (4): 347-62.


Molecular approach to dorsoanterior development in Xenopus laevis., Sato SM., Dev Biol. January 1, 1990; 137 (1): 135-41.          


Differential keratin gene expression during the differentiation of the cement gland of Xenopus laevis., LaFlamme SE., Dev Biol. February 1, 1990; 137 (2): 414-8.        


XK endo B is preferentially expressed in several induced embryonic tissues during the development of Xenopus laevis., LaFlamme SE., Differentiation. March 1, 1990; 43 (1): 1-9.          


The Xenopus XIHbox 6 homeo protein, a marker of posterior neural induction, is expressed in proliferating neurons., Wright CV., Development. May 1, 1990; 109 (1): 225-34.                


Localization of specific mRNAs in Xenopus embryos by whole-mount in situ hybridization., Hemmati-Brivanlou A., Development. October 1, 1990; 110 (2): 325-30.  


Correlated onset and patterning of proopiomelanocortin gene expression in embryonic Xenopus brain and pituitary., Hayes WP., Development. November 1, 1990; 110 (3): 747-57.              


The distribution of E-cadherin during Xenopus laevis development., Levi G., Development. January 1, 1991; 111 (1): 159-69.                


Development of the Xenopus laevis hatching gland and its relationship to surface ectoderm patterning., Drysdale TA., Development. February 1, 1991; 111 (2): 469-78.            


Separation of an anterior inducing activity from development of dorsal axial mesoderm in large-headed frog embryos., Elinson RP., Dev Biol. May 1, 1991; 145 (1): 91-8.


Retinoic acid modifies the pattern of cell differentiation in the central nervous system of neurula stage Xenopus embryos., Ruiz i Altaba A., Development. August 1, 1991; 112 (4): 945-58.                


XLPOU 1 and XLPOU 2, two novel POU domain genes expressed in the dorsoanterior region of Xenopus embryos., Agarwal VR., Dev Biol. October 1, 1991; 147 (2): 363-73.                  


EP-cadherin in muscles and epithelia of Xenopus laevis embryos., Levi G., Development. December 1, 1991; 113 (4): 1335-44.              


Retinoic acid causes abnormal development and segmental patterning of the anterior hindbrain in Xenopus embryos., Papalopulu N., Development. December 1, 1991; 113 (4): 1145-58.                          


Localization of a nervous system-specific class II beta-tubulin gene in Xenopus laevis embryos by whole-mount in situ hybridization., Oschwald R., Int J Dev Biol. December 1, 1991; 35 (4): 399-405.      


The stopping response of Xenopus laevis embryos: behaviour, development and physiology., Boothby KM., J Comp Physiol A. February 1, 1992; 170 (2): 171-80.


Identification and developmental expression of a novel low molecular weight neuronal intermediate filament protein expressed in Xenopus laevis., Charnas LR., J Neurosci. August 1, 1992; 12 (8): 3010-24.                      


The stopping response of Xenopus laevis embryos: pharmacology and intracellular physiology of rhythmic spinal neurones and hindbrain neurones., Boothby KM., J Exp Biol. August 1, 1992; 169 65-86.


A novel homeobox gene expressed in the anterior neural plate of the Xenopus embryo., Zaraisky AG., Dev Biol. August 1, 1992; 152 (2): 373-82.          


The armadillo homologs beta-catenin and plakoglobin are differentially expressed during early development of Xenopus laevis., DeMarais AA., Dev Biol. October 1, 1992; 153 (2): 337-46.          


Xenopus Distal-less related homeobox genes are expressed in the developing forebrain and are induced by planar signals., Papalopulu N., Development. March 1, 1993; 117 (3): 961-75.          


Expression of a Xenopus Distal-less homeobox gene involved in forebrain and cranio-facial development., Dirksen ML., Mech Dev. May 1, 1993; 41 (2-3): 121-8.        


Expression of an extracellular deletion of Xotch diverts cell fate in Xenopus embryos., Coffman CR., Cell. May 21, 1993; 73 (4): 659-71.            


Catenins in Xenopus embryogenesis and their relation to the cadherin-mediated cell-cell adhesion system., Schneider S., Development. June 1, 1993; 118 (2): 629-40.                    


Inductive events in the patterning of the Xenopus laevis hatching and cement glands, two cell types which delimit head boundaries., Drysdale TA., Dev Biol. July 1, 1993; 158 (1): 245-53.


GATA-4 is a novel transcription factor expressed in endocardium of the developing heart., Kelley C., Development. July 1, 1993; 118 (3): 817-27.                


Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis., Moon RT., Development. September 1, 1993; 119 (1): 97-111.                  


v-erbA and citral reduce the teratogenic effects of all-trans retinoic acid and retinol, respectively, in Xenopus embryogenesis., Schuh TJ., Development. November 1, 1993; 119 (3): 785-98.                  


XNkx-2.5, a Xenopus gene related to Nkx-2.5 and tinman: evidence for a conserved role in cardiac development., Tonissen KF., Dev Biol. March 1, 1994; 162 (1): 325-8.  


GR transcripts are localized during early Xenopus laevis embryogenesis and overexpression of GR inhibits differentiation after dexamethasone treatment., Gao X., Biochem Biophys Res Commun. March 15, 1994; 199 (2): 734-41.        

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???