Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (327) Expression Attributions Wiki
XB-ANAT-452

Papers associated with melanophore (and camp)

Limit to papers also referencing gene:
Show all melanophore papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Serotonergic regulation of melanocyte conversion: A bioelectrically regulated network for stochastic all-or-none hyperpigmentation., Lobikin M., Sci Signal. October 6, 2015; 8 (397): ra99.


Melanopsins: Localization and Phototransduction in Xenopus laevis Melanophores., Moraes MN., Photochem Photobiol. January 1, 2015; 91 (5): 1133-41.


Stimulation of the CLIP-170--dependent capture of membrane organelles by microtubules through fine tuning of microtubule assembly dynamics., Lomakin AJ., Mol Biol Cell. November 1, 2011; 22 (21): 4029-37.          


Light modulates the melanophore response to alpha-MSH in Xenopus laevis: an analysis of the signal transduction crosstalk mechanisms involved., Isoldi MC., Gen Comp Endocrinol. January 1, 2010; 165 (1): 104-10.          


Panax ginseng induces anterograde transport of pigment organelles in Xenopus melanophores., Eriksson TL., J Ethnopharmacol. September 2, 2008; 119 (1): 17-23.


Rab32 regulates melanosome transport in Xenopus melanophores by protein kinase a recruitment., Park M., Curr Biol. December 4, 2007; 17 (23): 2030-4.


Regulation of bidirectional melanosome transport by organelle bound MAP kinase., Deacon SW., Curr Biol. March 8, 2005; 15 (5): 459-63.


Protein kinase A, which regulates intracellular transport, forms complexes with molecular motors on organelles., Kashina AS., Curr Biol. October 26, 2004; 14 (20): 1877-81.        


Melatonin, melatonin receptors and melanophores: a moving story., Sugden D., Pigment Cell Res. October 1, 2004; 17 (5): 454-60.


Phosphoinositide 3-kinase is involved in Xenopus and Labrus melanophore aggregation., Andersson TP., Cell Signal. December 1, 2003; 15 (12): 1119-27.


Some sweet and bitter tastants stimulate inhibitory pathway of adenylyl cyclase via melatonin and alpha 2-adrenergic receptors in Xenopus laevis melanophores., Zubare-Samuelov M., Am J Physiol Cell Physiol. November 1, 2003; 285 (5): C1255-62.


Maxadilan activates PAC1 receptors expressed in Xenopus laevis xelanophores., Pereira P., Pigment Cell Res. December 1, 2002; 15 (6): 461-6.


New aspects of signal transduction in the Xenopus laevis melanotrope cell., Roubos EW., Gen Comp Endocrinol. May 1, 2002; 126 (3): 255-60.


Characterization of the cloned guinea pig leukotriene B4 receptor: comparison to its human orthologue., Boie Y., Eur J Pharmacol. September 10, 1999; 380 (2-3): 203-13.


Functional characterization of a receptor for vasoactive-intestinal-peptide-related peptides in cultured dermal melanophores from Xenopus laevis., Marotti LA., Pigment Cell Res. April 1, 1999; 12 (2): 89-97.


Identification of a GABAB receptor subunit, gb2, required for functional GABAB receptor activity., Ng GY., J Biol Chem. March 19, 1999; 274 (12): 7607-10.


Amphibian Melanophore Technology as a Functional Screen for Antagonists of G-Protein Coupled 7-Transmembrane Receptors., Nuttall ME., J Biomol Screen. January 1, 1999; 4 (5): 269-278.


Regulation of organelle movement in melanophores by protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2A (PP2A)., Reilein AR., J Cell Biol. August 10, 1998; 142 (3): 803-13.            


Background adaptation by Xenopus laevis: a model for studying neuronal information processing in the pituitary pars intermedia., Roubos EW., Comp Biochem Physiol A Physiol. November 1, 1997; 118 (3): 533-50.


Sauvagine and TRH differentially stimulate proopiomelanocortin biosynthesis in the Xenopus laevis intermediate pituitary., Dotman CH., Neuroendocrinology. August 1, 1997; 66 (2): 106-13.


Novel isoforms of Mel1c melatonin receptors modulating intracellular cyclic guanosine 3',5'-monophosphate levels., Jockers R., Mol Endocrinol. July 1, 1997; 11 (8): 1070-81.


Melanophore pigment dispersion responses to agonists show two patterns of sensitivity to inhibitors of cAMP-dependent protein kinase and protein kinase C., McClintock TS., J Cell Physiol. April 1, 1996; 167 (1): 1-7.


Combinatorial diffusion assay used to identify topically active melanocyte-stimulating hormone receptor antagonists., Quillan JM., Proc Natl Acad Sci U S A. March 28, 1995; 92 (7): 2894-8.            


Functional expression and characterization of human D2 and D3 dopamine receptors., Potenza MN., J Neurosci. March 1, 1994; 14 (3 Pt 2): 1463-76.


Characterization of a serotonin receptor endogenous to frog melanophores., Potenza MN., Naunyn Schmiedebergs Arch Pharmacol. January 1, 1994; 349 (1): 11-9.


A rapid quantitative bioassay for evaluating the effects of ligands upon receptors that modulate cAMP levels in a melanophore cell line., Potenza MN., Pigment Cell Res. December 1, 1992; 5 (6): 372-8.


A method for evaluating the effects of ligands upon Gs protein-coupled receptors using a recombinant melanophore-based bioassay., Potenza MN., Anal Biochem. November 1, 1992; 206 (2): 315-22.


Calcium requirement for alpha-MSH action on melanophores: studies with forskolin., de Graan PN., J Recept Res. January 1, 1984; 4 (1-6): 521-36.


A new in vitro melanophore bioassay for MSH using tail-fins of Xenopus tadpoles., de Graan PN., Mol Cell Endocrinol. October 1, 1983; 32 (2-3): 271-84.


Proliferation in vitro of melanophores from Xenopus laevis., Fukuzawa T., J Exp Zool. May 1, 1983; 226 (2): 239-44.

???pagination.result.page??? 1