Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1290) Expression Attributions Wiki
XB-ANAT-480

Papers associated with blastomere

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 16 17 18 19 20 21 22 23 24 25 26

Sort Newest To Oldest Sort Oldest To Newest

Targeted degradation of mRNA in Xenopus oocytes and embryos directed by modified oligonucleotides: studies of An2 and cyclin in embryogenesis., Dagle JM., Nucleic Acids Res. August 25, 1990; 18 (16): 4751-7.


Cytological effects of the microinjection of antibody to ras p21 in early cleavage Xenopus embryos., Miron MJ., Mol Reprod Dev. April 1, 1990; 25 (4): 317-27.


Fibronectin-rich fibrillar extracellular matrix controls cell migration during amphibian gastrulation., Boucaut JC., Int J Dev Biol. March 1, 1990; 34 (1): 139-47.              


Segregation of fate during cleavage of frog (Xenopus laevis) blastomeres., Moody SA., Anat Embryol (Berl). January 1, 1990; 182 (4): 347-62.


Cytostatic factor (CSF) in the eggs of Xenopus laevis., Moses RM., Exp Cell Res. November 1, 1989; 185 (1): 271-6.


Quantitative lineage analysis of the origin of frog primary motor and sensory neurons from cleavage stage blastomeres., Moody SA., J Neurosci. August 1, 1989; 9 (8): 2919-30.


Specification and Establishment of Dorsal-Ventral Polarity in Eggs and Embryos of Xenopus laevis: (body plan specification/dorsal-ventral polarity/Xenopus laevis/"antero-dorsal structure-forming activity")., Wakahara M., Dev Growth Differ. June 1, 1989; 31 (3): 197-207.


Slow intermixing of cells during Xenopus embryogenesis contributes to the consistency of the blastomere fate map., Wetts R., Development. January 1, 1989; 105 (1): 9-15.


[Role of c-myc protein in the early embryonic development of Xenopus]., Méchali M., C R Acad Sci III. January 1, 1989; 308 (8): 213-8.


Localization of c-myc expression during oogenesis and embryonic development in Xenopus laevis., Hourdry J., Development. December 1, 1988; 104 (4): 631-41.          


The first cleavage plane and the embryonic axis are determined by separate mechanisms in Xenopus laevis. I. Independence in undisturbed embryos., Danilchik MV., Dev Biol. July 1, 1988; 128 (1): 58-64.


Microinjection of synthetic Xhox-1A homeobox mRNA disrupts somite formation in developing Xenopus embryos., Harvey RP., Cell. June 3, 1988; 53 (5): 687-97.              


Vimentin expression in oocytes, eggs and early embryos of Xenopus laevis., Tang P., Development. June 1, 1988; 103 (2): 279-87.              


Mapping of neural crest pathways in Xenopus laevis using inter- and intra-specific cell markers., Krotoski DM., Dev Biol. May 1, 1988; 127 (1): 119-32.


The organization of mesodermal pattern in Xenopus laevis: experiments using a Xenopus mesoderm-inducing factor., Cooke J., Development. December 1, 1987; 101 (4): 893-908.            


The Xenopus animal pole blastomere., Smith JC., Bioessays. November 1, 1987; 7 (5): 229-34.


Fates of the blastomeres of the 32-cell-stage Xenopus embryo., Moody SA., Dev Biol. August 1, 1987; 122 (2): 300-19.      


Polar asymmetry in the organization of the cortical cytokeratin system of Xenopus laevis oocytes and embryos., Klymkowsky MW., Development. July 1, 1987; 100 (3): 543-57.              


Regional specification within the mesoderm of early embryos of Xenopus laevis., Dale L., Development. June 1, 1987; 100 (2): 279-95.


Fate map for the 32-cell stage of Xenopus laevis., Dale L., Development. April 1, 1987; 99 (4): 527-51.                


The first cleavage furrow demarcates the dorsal-ventral axis in Xenopus embryos., Klein SL., Dev Biol. March 1, 1987; 120 (1): 299-304.


Fates of the blastomeres of the 16-cell stage Xenopus embryo., Moody SA., Dev Biol. February 1, 1987; 119 (2): 560-78.        


Neurites show pathway specificity but lack directional specificity or predetermined lengths in Xenopus embryos., Huang S., J Neurobiol. November 1, 1986; 17 (6): 593-603.


Cell proliferation in the ectoderm of the Xenopus embryo: development of substratum requirements for cytokinesis., Winklbauer R., Dev Biol. November 1, 1986; 118 (1): 70-81.


The direction of cleavage waves and the regional variation in the duration of cleavage cycles on the dorsal side of the Xenopus laevis blastula., Boterenbrood EC., Rouxs Arch Dev Biol. October 1, 1986; 195 (8): 484-488.


Cytoskeletal changes during oogenesis and early development of Xenopus laevis., Wylie CC., J Cell Sci Suppl. January 1, 1986; 5 329-41.          


Change of karyoskeleton during spermatogenesis of Xenopus: expression of lamin LIV, a nuclear lamina protein specific for the male germ line., Benavente R., Proc Natl Acad Sci U S A. September 1, 1985; 82 (18): 6176-80.          


Dynamics of the control of body pattern in the development of Xenopus laevis. I. Timing and pattern in the development of dorsoanterior and posterior blastomere pairs, isolated at the 4-cell stage., Cooke J., J Embryol Exp Morphol. August 1, 1985; 88 85-112.


Neurite outgrowth traced by means of horseradish peroxidase inherited from neuronal ancestral cells in frog embryos., Jacobson M., Dev Biol. July 1, 1985; 110 (1): 102-13.


Lineage segregation and developmental autonomy in expression of functional muscle acetylcholinesterase mRNA in the ascidian embryo., Meedel TH., Dev Biol. October 1, 1984; 105 (2): 479-87.


Differentiation of presumptive primordial germ cell (pPGC)-like cells in explants into PGCs in experimental tadpoles., Ikenishi K., Dev Biol. May 1, 1984; 103 (1): 258-62.


Pattern regulation in defect embryos of Xenopus laevis., Kageura H., Dev Biol. February 1, 1984; 101 (2): 410-5.


Communicating junctions and calmodulin: inhibition of electrical uncoupling in Xenopus embryo by calmidazolium., Peracchia C., J Membr Biol. January 1, 1984; 81 (1): 49-58.


Retinal protein synthesis in relationship to environmental lighting., Hollyfield JG., Invest Ophthalmol Vis Sci. November 1, 1982; 23 (5): 631-9.


Rohon-Beard neurons arise from a substitute ancestral cell after removal of the cell from which they normally arise in the 16-cell frog embryo., Jacobson M., J Neurosci. August 1, 1981; 1 (8): 923-7.


Clonal organization of the central nervous system of the frog. II. Clones stemming from individual blastomeres of the 32- and 64-cell stages., Jacobson M., J Neurosci. March 1, 1981; 1 (3): 271-84.


Photoreceptor outer segment development: light and dark regulate the rate of membrane addition and loss., Hollyfield JG., Invest Ophthalmol Vis Sci. February 1, 1979; 18 (2): 117-32.


Further studies of the prospective fates of blastomeres at the 32-cell stage of Xenopus laevis embryos., Nakamura O., Med Biol. December 1, 1978; 56 (6): 355-60.


Origin of the retina from both sides of the embryonic brain: a contribution to the problem of crossing at the optic chiasma., Jacobson M., Science. November 10, 1978; 202 (4368): 637-9.


Specificity in deoxyribonucleic acid uptake by transformable Haemophilus influenzae., Scocca JJ., J Bacteriol. May 1, 1974; 118 (2): 369-73.

???pagination.result.page??? ???pagination.result.prev??? 16 17 18 19 20 21 22 23 24 25 26