Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (6783) Expression Attributions Wiki
XB-ANAT-730

Papers associated with visual system (and msx1)

Limit to papers also referencing gene:
Show all visual system papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Xmsx-1 modifies mesodermal tissue pattern along dorsoventral axis in Xenopus laevis embryo., Maeda R., Development. July 1, 1997; 124 (13): 2553-60.                  


Xenopus brain factor-2 controls mesoderm, forebrain and neural crest development., Gómez-Skarmeta JL., Mech Dev. January 1, 1999; 80 (1): 15-27.              


Suppression of head formation by Xmsx-1 through the inhibition of intracellular nodal signaling., Yamamoto TS., Development. July 1, 2001; 128 (14): 2769-79.      


Transgenic Xenopus embryos reveal that anterior neural development requires continued suppression of BMP signaling after gastrulation., Hartley KO., Dev Biol. October 1, 2001; 238 (1): 168-84.                


XMAN1, an inner nuclear membrane protein, antagonizes BMP signaling by interacting with Smad1 in Xenopus embryos., Osada S., Development. May 1, 2003; 130 (9): 1783-94.            


Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins., Postigo AA., EMBO J. May 15, 2003; 22 (10): 2453-62.


The amino-terminal region of Gli3 antagonizes the Shh response and acts in dorsoventral fate specification in the developing spinal cord., Meyer NP., Dev Biol. May 15, 2003; 257 (2): 343-55.


Xenopus X-box binding protein 1, a leucine zipper transcription factor, is involved in the BMP signaling pathway., Zhao H., Dev Biol. May 15, 2003; 257 (2): 278-91.          


Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate., Beck CW., Dev Cell. September 1, 2003; 5 (3): 429-39.            


Twisted gastrulation loss-of-function analyses support its role as a BMP inhibitor during early Xenopus embryogenesis., Blitz IL., Development. October 1, 2003; 130 (20): 4975-88.              


Molecular anatomy of placode development in Xenopus laevis., Schlosser G., Dev Biol. July 15, 2004; 271 (2): 439-66.                          


Msx1 and Pax3 cooperate to mediate FGF8 and WNT signals during Xenopus neural crest induction., Monsoro-Burq AH., Dev Cell. February 1, 2005; 8 (2): 167-78.            


Microarray-based identification of VegT targets in Xenopus., Taverner NV., Mech Dev. March 1, 2005; 122 (3): 333-54.                                          


Identification of novel genes affecting mesoderm formation and morphogenesis through an enhanced large scale functional screen in Xenopus., Chen JA., Mech Dev. March 1, 2005; 122 (3): 307-31.                                                                                                                      


Depletion of three BMP antagonists from Spemann's organizer leads to a catastrophic loss of dorsal structures., Khokha MK., Dev Cell. March 1, 2005; 8 (3): 401-11.                          


BMP-3 is a novel inhibitor of both activin and BMP-4 signaling in Xenopus embryos., Gamer LW., Dev Biol. September 1, 2005; 285 (1): 156-68.              


Nerve-dependent and -independent events in blastema formation during Xenopus froglet limb regeneration., Suzuki M., Dev Biol. October 1, 2005; 286 (1): 361-75.              


RE-1 silencer of transcription/neural restrictive silencer factor modulates ectodermal patterning during Xenopus development., Olguín P., J Neurosci. March 8, 2006; 26 (10): 2820-9.                    


Induction and specification of cranial placodes., Schlosser G., Dev Biol. June 15, 2006; 294 (2): 303-51.                


Novel gene ashwin functions in Xenopus cell survival and anteroposterior patterning., Patil SS., Dev Dyn. July 1, 2006; 235 (7): 1895-907.                            


Smurf1 regulates neural patterning and folding in Xenopus embryos by antagonizing the BMP/Smad1 pathway., Alexandrova EM., Dev Biol. November 15, 2006; 299 (2): 398-410.                      


Neural induction requires continued suppression of both Smad1 and Smad2 signals during gastrulation., Chang C., Development. November 1, 2007; 134 (21): 3861-72.                


Lrig3 regulates neural crest formation in Xenopus by modulating Fgf and Wnt signaling pathways., Zhao H., Development. April 1, 2008; 135 (7): 1283-93.                            


Requirement for Wnt and FGF signaling in Xenopus tadpole tail regeneration., Lin G., Dev Biol. April 15, 2008; 316 (2): 323-35.              


Upstream stimulatory factors, USF1 and USF2 are differentially expressed during Xenopus embryonic development., Fujimi TJ., Gene Expr Patterns. July 1, 2008; 8 (6): 376-381.                          


Extracellular regulation of developmental cell signaling by XtSulf1., Freeman SD., Dev Biol. August 15, 2008; 320 (2): 436-45.            


Hairy2 functions through both DNA-binding and non DNA-binding mechanisms at the neural plate border in Xenopus., Nichane M., Dev Biol. October 15, 2008; 322 (2): 368-80.                        


A new role for the Endothelin-1/Endothelin-A receptor signaling during early neural crest specification., Bonano M., Dev Biol. November 1, 2008; 323 (1): 114-29.                          


Cloning and expression analysis of the anterior parahox genes, Gsh1 and Gsh2 from Xenopus tropicalis., Illes JC., Dev Dyn. January 1, 2009; 238 (1): 194-203.                                


Samba, a Xenopus hnRNP expressed in neural and neural crest tissues., Yan CY., Dev Dyn. January 1, 2009; 238 (1): 204-9.      


Xenopus Wntless and the retromer complex cooperate to regulate XWnt4 secretion., Kim H., Mol Cell Biol. April 1, 2009; 29 (8): 2118-28.  


Overexpression of the transcription factor Msx1 is insufficient to drive complete regeneration of refractory stage Xenopus laevis hindlimbs., Barker DM., Dev Dyn. June 1, 2009; 238 (6): 1366-78.        


Bone morphogenetic protein 15 (BMP15) acts as a BMP and Wnt inhibitor during early embryogenesis., Di Pasquale E., J Biol Chem. September 18, 2009; 284 (38): 26127-36.                        


Identification and developmental expression of Xenopus laevis SUMO proteases., Wang Y., PLoS One. December 11, 2009; 4 (12): e8462.          


Vestigial like gene family expression in Xenopus: common and divergent features with other vertebrates., Faucheux C., Int J Dev Biol. January 1, 2010; 54 (8-9): 1375-82.                            


Mechanisms driving neural crest induction and migration in the zebrafish and Xenopus laevis., Klymkowsky MW., Cell Adh Migr. January 1, 2010; 4 (4): 595-608.  


The F-box protein Cdc4/Fbxw7 is a novel regulator of neural crest development in Xenopus laevis., Almeida AD., Neural Dev. January 4, 2010; 5 1.                              


Conserved expression of mouse Six1 in the pre-placodal region (PPR) and identification of an enhancer for the rostral PPR., Sato S., Dev Biol. August 1, 2010; 344 (1): 158-71.  


Wnt/beta-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo., Tran HT., Proc Natl Acad Sci U S A. September 14, 2010; 107 (37): 16160-5.                                                


Induction of vertebrate regeneration by a transient sodium current., Tseng AS., J Neurosci. September 29, 2010; 30 (39): 13192-200.                    


Xenopus reduced folate carrier regulates neural crest development epigenetically., Li J., PLoS One. January 1, 2011; 6 (11): e27198.                            


Indian hedgehog signaling is required for proper formation, maintenance and migration of Xenopus neural crest., Agüero TH., Dev Biol. April 15, 2012; 364 (2): 99-113.                    


Conservation and evolutionary divergence in the activity of receptor-regulated smads., Sorrentino GM., Evodevo. October 1, 2012; 3 (1): 22.              


Essential role of AWP1 in neural crest specification in Xenopus., Seo JH., Int J Dev Biol. January 1, 2013; 57 (11-12): 829-36.                  


Light-activation of the Archaerhodopsin H(+)-pump reverses age-dependent loss of vertebrate regeneration: sparking system-level controls in vivo., Adams DS., Biol Open. March 15, 2013; 2 (3): 306-13.          


Pax3 and Zic1 drive induction and differentiation of multipotent, migratory, and functional neural crest in Xenopus embryos., Milet C., Proc Natl Acad Sci U S A. April 2, 2013; 110 (14): 5528-33.                      


Role of Sp5 as an essential early regulator of neural crest specification in xenopus., Park DS., Dev Dyn. December 1, 2013; 242 (12): 1382-94.                


Early embryonic specification of vertebrate cranial placodes., Schlosser G., Wiley Interdiscip Rev Dev Biol. January 1, 2014; 3 (5): 349-63.


The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning., Schlosser G., Dev Biol. May 1, 2014; 389 (1): 98-119.            


Transcription factor AP2 epsilon (Tfap2e) regulates neural crest specification in Xenopus., Hong CS., Dev Neurobiol. September 1, 2014; 74 (9): 894-906.                    

???pagination.result.page??? 1 2 ???pagination.result.next???