Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (470) Expression Attributions Wiki
XB-ANAT-134

Papers associated with pancreas (and gcg)

Limit to papers also referencing gene:
Show all pancreas papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

A GLP-1/glucagon (GCG)/CCK2 receptors tri-agonist provides new therapy for obesity and diabetes., Zhao S., Br J Pharmacol. September 1, 2022; 179 (17): 4360-4377.


Peptide-based long-acting co-agonists of GLP-1 and cholecystokinin 1 receptors as novel anti-diabesity agents., Yang Q., Eur J Med Chem. April 5, 2022; 233 114214.


Stapled and Xenopus Glucagon-Like Peptide 1 (GLP-1)-Based Dual GLP-1/Gastrin Receptor Agonists with Improved Metabolic Benefits in Rodent Models of Obesity and Diabetes., Chen X., J Med Chem. November 12, 2020; 63 (21): 12595-12613.


Rational design and biological evaluation of gemfibrozil modified Xenopus GLP-1 derivatives as long-acting hypoglycemic agents., Han J., Eur J Med Chem. July 15, 2020; 198 112389.


Rational design of dimeric lipidated Xenopus glucagon-like peptide 1 analogues as long-acting antihyperglycaemic agents., Han J., Eur J Med Chem. September 5, 2018; 157 177-187.


Retinoic acid-induced expression of Hnf1b and Fzd4 is required for pancreas development in Xenopus laevis., Gere-Becker MB., Development. June 8, 2018; 145 (12):                                   


Magainin-AM2 improves glucose homeostasis and beta cell function in high-fat fed mice., Ojo OO., Biochim Biophys Acta. January 1, 2015; 1850 (1): 80-7.


A Novel Long-Acting Glucagon-Like Peptide-1 Agonist with Improved Efficacy in Insulin Secretion and β-Cell Growth., Kim HY., Endocrinol Metab (Seoul). September 1, 2014; 29 (3): 320-7.        


Characterization of glucagon-like peptide 1 receptor (GLP1R) gene in chickens: functional analysis, tissue distribution, and identification of its transcript variants., Huang G., Domest Anim Endocrinol. July 1, 2012; 43 (1): 1-15.


Homeoprotein hhex-induced conversion of intestinal to ventral pancreatic precursors results in the formation of giant pancreata in Xenopus embryos., Zhao H., Proc Natl Acad Sci U S A. May 29, 2012; 109 (22): 8594-9.                              


Transient expression of Ngn3 in Xenopus endoderm promotes early and ectopic development of pancreatic beta and delta cells., Oropeza D., Genesis. March 1, 2012; 50 (3): 271-85.                        


Xenopus staufen2 is required for anterior endodermal organ formation., Bilogan CK., Genesis. March 1, 2012; 50 (3): 251-9.                      


Evolutionary expression of glucose-dependent-insulinotropic polypeptide (GIP)., Musson MC., Regul Pept. November 10, 2011; 171 (1-3): 26-34.


Functional analysis of Rfx6 and mutant variants associated with neonatal diabetes., Pearl EJ., Dev Biol. March 1, 2011; 351 (1): 135-45.                    


BrunoL1 regulates endoderm proliferation through translational enhancement of cyclin A2 mRNA., Horb LD., Dev Biol. September 15, 2010; 345 (2): 156-69.                


Rgs16 and Rgs8 in embryonic endocrine pancreas and mouse models of diabetes., Villasenor A., Dis Model Mech. January 1, 2010; 3 (9-10): 567-80.


Xenopus insm1 is essential for gastrointestinal and pancreatic endocrine cell development., Horb LD., Dev Dyn. October 1, 2009; 238 (10): 2505-10.                


Xenopus pancreas development., Pearl EJ., Dev Dyn. June 1, 2009; 238 (6): 1271-86.          


The tetraspanin Tm4sf3 is localized to the ventral pancreas and regulates fusion of the dorsal and ventral pancreatic buds., Jarikji Z., Development. June 1, 2009; 136 (11): 1791-800.                  


Differential ability of Ptf1a and Ptf1a-VP16 to convert stomach, duodenum and liver to pancreas., Jarikji ZH., Dev Biol. April 15, 2007; 304 (2): 786-99.                


Target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (t-SNAREs) differently regulate activation and inactivation gating of Kv2.2 and Kv2.1: Implications on pancreatic islet cell Kv channels., Wolf-Goldberg T., Mol Pharmacol. September 1, 2006; 70 (3): 818-28.


Combined ectopic expression of Pdx1 and Ptf1a/p48 results in the stable conversion of posterior endoderm into endocrine and exocrine pancreatic tissue., Afelik S., Genes Dev. June 1, 2006; 20 (11): 1441-6.                        


Wnt5 signaling in vertebrate pancreas development., Kim HJ., BMC Biol. October 24, 2005; 3 23.                    


NeuroD1 in the endocrine pancreas: localization and dual function as an activator and repressor., Itkin-Ansari P., Dev Dyn. July 1, 2005; 233 (3): 946-53.


Experimental conversion of liver to pancreas., Horb ME., Curr Biol. January 21, 2003; 13 (2): 105-15.    


Comparative peptidomics of the endocrine pancreas: islet hormones from the clawed frog Xenopus laevis and the red-bellied newt Cynops pyrrhogaster., Conlon JM., J Endocrinol. December 1, 2002; 175 (3): 769-77.


Expression of amylase and other pancreatic genes in Xenopus., Horb ME., Mech Dev. May 1, 2002; 113 (2): 153-7.      


cDNA cloning of proglucagon from the stomach and pancreas of the dog., Irwin DM., DNA Seq. November 1, 2001; 12 (4): 253-60.


Amphibian glucagon family peptides: potent metabolic regulators in fish hepatocytes., Mommsen TP., Regul Pept. June 15, 2001; 99 (2-3): 111-8.


In vitro pancreas formation from Xenopus ectoderm treated with activin and retinoic acid., Moriya N., Dev Growth Differ. December 1, 2000; 42 (6): 593-602.


Characterization of insulin and atypically processed proglucagon-derived peptides from the surinam toad Pipa pipa (Anura:Pipidae)., Matutte B., Peptides. September 1, 2000; 21 (9): 1355-60.


Development of the pancreas in Xenopus laevis., Kelly OG., Dev Dyn. August 1, 2000; 218 (4): 615-27.                  


neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas., Gradwohl G., Proc Natl Acad Sci U S A. February 15, 2000; 97 (4): 1607-11.


Adrenomedullin in nonmammalian vertebrate pancreas: an immunocytochemical study., López J., Gen Comp Endocrinol. September 1, 1999; 115 (3): 309-22.          


Insulin and proglucagon-derived peptides from the horned frog, Ceratophrys ornata (Anura:Leptodactylidae)., White AM., Gen Comp Endocrinol. July 1, 1999; 115 (1): 143-54.


Endocrine pancreatic cells from Xenopus laevis: light and electron microscopic studies., Lozano MT., Gen Comp Endocrinol. May 1, 1999; 114 (2): 191-205.


An immunohistochemical and morphometric analysis of insulin, insulin-like growth factor I, glucagon, somatostatin, and PP in the development of the gastro-entero-pancreatic system of Xenopus laevis., Maake C., Gen Comp Endocrinol. May 1, 1998; 110 (2): 182-95.                


The Xenopus proglucagon gene encodes novel GLP-1-like peptides with insulinotropic properties., Irwin DM., Proc Natl Acad Sci U S A. July 22, 1997; 94 (15): 7915-20.


PACAP/VIP receptors in pancreatic beta-cells: their roles in insulin secretion., Inagaki N., Ann N Y Acad Sci. December 26, 1996; 805 44-51; discussion 52-3.


The Xenopus GATA-4/5/6 genes are associated with cardiac specification and can regulate cardiac-specific transcription during embryogenesis., Jiang Y., Dev Biol. March 15, 1996; 174 (2): 258-70.          


Immunohistochemical localization of insulin-like growth factor I and II in the endocrine pancreas of birds, reptiles, and amphibia., Reinecke M., Gen Comp Endocrinol. December 1, 1995; 100 (3): 385-96.


Autonomous endodermal determination in Xenopus: regulation of expression of the pancreatic gene XlHbox 8., Gamer LW., Dev Biol. September 1, 1995; 171 (1): 240-51.                


Insulin, glucagon and somatostatin localization in the pancreas of metamorphosed Xenopus laevis., Cowan BJ., Tissue Cell. January 1, 1991; 23 (6): 777-87.


Corticotropin-releasing factor (CRF)-like immunoreactivity in the gastro-entero-pancreatic endocrine system., Petrusz P., Peptides. January 1, 1984; 5 Suppl 1 71-8.


Corticotropin-releasing factor (CRF)-like immunoreactivity in the vertebrate endocrine pancreas., Petrusz P., Proc Natl Acad Sci U S A. March 1, 1983; 80 (6): 1721-5.


Effect of xenopsin on blood flow, hormone release, and acid secretion., Zinner MJ., Am J Physiol. September 1, 1982; 243 (3): G195-9.


The effects of xenopsin of endocrine pancreas and gastric antrum in dogs., Kawanishi K., Horm Metab Res. July 1, 1978; 10 (4): 283-6.

???pagination.result.page??? 1