Results 1 - 50 of 102 results
Transplantation of Ears Provides Insights into Inner Ear Afferent Pathfinding Properties. , Gordy C., Dev Neurobiol. November 1, 2018; 78 (11): 1064-1080.
Expression pattern of bcar3, a downstream target of Gata2, and its binding partner, bcar1, during Xenopus development. , Green YS., Gene Expr Patterns. January 1, 2016; 20 (1): 55-62.
pdzrn3 is required for pronephros morphogenesis in Xenopus laevis. , Marracci S ., Int J Dev Biol. January 1, 2016; 60 (1-3): 57-63.
NF2/ Merlin is required for the axial pattern formation in the Xenopus laevis embryo. , Zhu X., Mech Dev. November 1, 2015; 138 Pt 3 305-12.
The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development. , Nogueira JM., Front Aging Neurosci. May 19, 2015; 7 62.
Evolutionarily conserved role for SoxC genes in neural crest specification and neuronal differentiation. , Uy BR., Dev Biol. January 15, 2015; 397 (2): 282-92.
Characterization of tweety gene ( ttyh1-3) expression in Xenopus laevis during embryonic development. , Halleran AD., Gene Expr Patterns. January 1, 2015; 17 (1): 38-44.
Identification of distal enhancers for Six2 expression in pronephros. , Suzuki N., Int J Dev Biol. January 1, 2015; 59 (4-6): 241-6.
Early stages of induction of anterior head ectodermal properties in Xenopus embryos are mediated by transcriptional cofactor ldb1. , Plautz CZ., Dev Dyn. December 1, 2014; 243 (12): 1606-18.
Developmental expression and role of Kinesin Eg5 during Xenopus laevis embryogenesis. , Fernández JP., Dev Dyn. April 1, 2014; 243 (4): 527-40.
Functional characterization in Xenopus oocytes of Na+ transport systems from durum wheat reveals diversity among two HKT1;4 transporters. , Ben Amar S., J Exp Bot. January 1, 2014; 65 (1): 213-22.
Characterization of the insulin-like growth factor binding protein family in Xenopus tropicalis. , Haramoto Y ., Int J Dev Biol. January 1, 2014; 58 (9): 705-11.
Comparative expression analysis of cysteine-rich intestinal protein family members crip1, 2 and 3 during Xenopus laevis embryogenesis. , Hempel A., Int J Dev Biol. January 1, 2014; 58 (10-12): 841-9.
The Nedd4-binding protein 3 ( N4BP3) is crucial for axonal and dendritic branching in developing neurons. , Schmeisser MJ., Neural Dev. September 17, 2013; 8 18.
Amer2 protein is a novel negative regulator of Wnt/ β-catenin signaling involved in neuroectodermal patterning. , Pfister AS., J Biol Chem. January 13, 2012; 287 (3): 1734-41.
Molecular evolution of vertebrate sex-determining genes. , Mawaribuchi S., Chromosome Res. January 1, 2012; 20 (1): 139-51.
Analysis of the expression of microtubule plus-end tracking proteins (+TIPs) during Xenopus laevis embryogenesis. , Park EC ., Gene Expr Patterns. January 1, 2012; 12 (5-6): 204-12.
Origin and segregation of cranial placodes in Xenopus laevis. , Pieper M., Dev Biol. December 15, 2011; 360 (2): 257-75.
Expression of periostin during Xenopus laevis embryogenesis. , Tao S., Dev Genes Evol. October 1, 2011; 221 (4): 247-54.
The F-box protein Ppa is a common regulator of core EMT factors Twist, Snail, Slug, and Sip1. , Lander R., J Cell Biol. July 11, 2011; 194 (1): 17-25.
The spatio-temporal expression of ProSAP/shank family members and their interaction partner LAPSER1 during Xenopus laevis development. , Gessert S., Dev Dyn. June 1, 2011; 240 (6): 1528-36.
EBF factors drive expression of multiple classes of target genes governing neuronal development. , Green YS., Neural Dev. April 30, 2011; 6 19.
Cloning and characterization of GABAA α subunits and GABAB subunits in Xenopus laevis during development. , Kaeser GE., Dev Dyn. April 1, 2011; 240 (4): 862-73.
Regulation and expression of elrD1 and elrD2 transcripts during early Xenopus laevis development. , Nassar F ., Int J Dev Biol. January 1, 2011; 55 (1): 127-32.
HES6-1 and HES6-2 function through different mechanisms during neuronal differentiation. , Vilas-Boas F., PLoS One. December 2, 2010; 5 (12): e15459.
Developmental expression patterns of candidate cofactors for vertebrate six family transcription factors. , Neilson KM ., Dev Dyn. December 1, 2010; 239 (12): 3446-66.
Expression analysis of Runx3 and other Runx family members during Xenopus development. , Park BY., Gene Expr Patterns. June 1, 2010; 10 (4-5): 159-66.
The F-box protein Cdc4/ Fbxw7 is a novel regulator of neural crest development in Xenopus laevis. , Almeida AD., Neural Dev. January 4, 2010; 5 1.
Transplantation of Xenopus laevis ears reveals the ability to form afferent and efferent connections with the spinal cord. , Elliott KL., Int J Dev Biol. January 1, 2010; 54 (10): 1443-51.
Cloning and characterization of voltage-gated calcium channel alpha1 subunits in Xenopus laevis during development. , Lewis BB ., Dev Dyn. November 1, 2009; 238 (11): 2891-902.
Myosin-X is critical for migratory ability of Xenopus cranial neural crest cells. , Nie S ., Dev Biol. November 1, 2009; 335 (1): 132-42.
Tumor necrosis factor-receptor-associated factor-4 is a positive regulator of transforming growth factor-beta signaling that affects neural crest formation. , Kalkan T., Mol Biol Cell. July 1, 2009; 20 (14): 3436-50.
Temporal regulation of Ath5 gene expression during eye development. , Willardsen MI., Dev Biol. February 15, 2009; 326 (2): 471-81.
DM-GRASP/ ALCAM/ CD166 is required for cardiac morphogenesis and maintenance of cardiac identity in first heart field derived cells. , Gessert S., Dev Biol. September 1, 2008; 321 (1): 150-61.
Eya1 and Six1 promote neurogenesis in the cranial placodes in a SoxB1-dependent fashion. , Schlosser G ., Dev Biol. August 1, 2008; 320 (1): 199-214.
Differential expression of Eya1 and Eya2 during chick early embryonic development. , Ishihara T., Gene Expr Patterns. May 1, 2008; 8 (5): 357-67.
Expression of Shisa2, a modulator of both Wnt and Fgf signaling, in the chick embryo. , Hedge TA., Int J Dev Biol. January 1, 2008; 52 (1): 81-5.
Cloning and developmental expression of the soxB2 genes, sox14 and sox21, during Xenopus laevis embryogenesis. , Cunningham DD ., Int J Dev Biol. January 1, 2008; 52 (7): 999-1004.
How old genes make a new head: redeployment of Six and Eya genes during the evolution of vertebrate cranial placodes. , Schlosser G ., Integr Comp Biol. September 1, 2007; 47 (3): 343-59.
Expression analysis of IGFBP-rP10, IGFBP-like and Mig30 in early Xenopus development. , Kuerner KM., Dev Dyn. October 1, 2006; 235 (10): 2861-7.
Differential role of 14-3-3 family members in Xenopus development. , Lau JM., Dev Dyn. July 1, 2006; 235 (7): 1761-76.
Survivin increased vascular development during Xenopus ontogenesis. , Du Pasquier D., Differentiation. June 1, 2006; 74 (5): 244-53.
The role of early lineage in GABAergic and glutamatergic cell fate determination in Xenopus laevis. , Li M., J Comp Neurol. April 20, 2006; 495 (6): 645-57.
RE-1 silencer of transcription/neural restrictive silencer factor modulates ectodermal patterning during Xenopus development. , Olguín P., J Neurosci. March 8, 2006; 26 (10): 2820-9.
A dominant-negative form of the E3 ubiquitin ligase Cullin-1 disrupts the correct allocation of cell fate in the neural crest lineage. , Voigt J., Development. February 1, 2006; 133 (3): 559-68.
Noelins modulate the timing of neuronal differentiation during development. , Moreno TA., Dev Biol. December 15, 2005; 288 (2): 434-47.
The Notch targets Esr1 and Esr10 are differentially regulated in Xenopus neural precursors. , Lamar E., Development. August 1, 2005; 132 (16): 3619-30.
To proliferate or to die: role of Id3 in cell cycle progression and survival of neural crest progenitors. , Kee Y., Genes Dev. March 15, 2005; 19 (6): 744-55.
bHLH-dependent and -independent modes of Ath5 gene regulation during retinal development. , Hutcheson DA ., Development. February 1, 2005; 132 (4): 829-39.
Xenopus flotillin1, a novel gene highly expressed in the dorsal nervous system. , Pandur PD ., Dev Dyn. December 1, 2004; 231 (4): 881-7.