Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2027) Expression Attributions Wiki
XB-ANAT-67

Papers associated with marginal zone

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Localization of the ribosomal DNA complements in the nucleolar organizer region of Xenopus laevis., Birnstiel ML., Natl Cancer Inst Monogr. December 1, 1966; 23 431-47.


[Increase in organizer cistrons for 5S RNA and transfer RNA in small Xenopus laevis oocytes]., Wegnez M., Arch Int Physiol Biochim. January 1, 1971; 79 (1): 215-7.


[Biochemical research on oogenesis. 4. Absence of amplification of 5 S RNA and tRNA organizer genes in early Xenopus laevis oocytes]., Wegnez M., Biochimie. January 1, 1972; 54 (8): 1069-72.


Properties of the primary organization field in the embryo of Xenopus laevis. 3. Retention of polarity in cell groups excised from the region of the early organizer., Cooke J., J Embryol Exp Morphol. August 1, 1972; 28 (1): 47-56.


Properties of the primary organization field in the embryo of Xenopus laevis. I. Autonomy of cell behaviour at the site of initial organizer formation., Cooke J., J Embryol Exp Morphol. August 1, 1972; 28 (1): 13-26.


The nucleolar organizer of Plethodon cinereus cinereus (Green). I. Location of the nucleolar organizer by in situ nucleic acid hybridization., Macgregor HC., Chromosoma. July 18, 1973; 42 (4): 415-26.


Properties of the primary organization field in the embryo of Xenopus laevis. V. Regulation after removal of the head organizer, in normal early gastrulae and in those already possessing a second implanted organizer., Cooke J., J Embryol Exp Morphol. October 1, 1973; 30 (2): 283-300.


Control of 5S RNA synthesis during early development of anucleolate and partial nucleolate mutants of Xenopus laevis., Miller L., J Cell Biol. December 1, 1973; 59 (3): 624-32.


Variation in rDNA redundancy level and nucleolar organizer length in normal and variant lines of the Mexican axolotl., Sinclair JH., J Cell Sci. July 1, 1974; 15 (2): 239-57.


Amplified ribosomal DNA from Xenopus laevis has heterogeneous spacer lengths., Wellauer PK., Proc Natl Acad Sci U S A. July 1, 1974; 71 (7): 2823-7.


Repression of nucleolar organizer activity in an interspecific hybrid of the genus Xenopus., Cassidy DM., Dev Biol. November 1, 1974; 41 (1): 84-96.


Local autonomy of gastrulation movements after dorsal lip removal in two anuran amphibians., Cooke J., J Embryol Exp Morphol. February 1, 1975; 33 (1): 147-57.


In situ hybridization of "nick-translated" 3H-ribosomal DNA to chromosomes from salamanders., Macgregor HC., Chromosoma. January 27, 1976; 54 (1): 15-25.


The karyotype of the tetraploid species Xenopus vestitus Laurent (Anura: pipidae)., Tymowska J., Cytogenet Cell Genet. January 1, 1977; 19 (6): 344-54.


Transplantation of nuclei from lymphocytes of adult frogs into enucleated eggs: special focus on technical parameters., Du Pasquier L., Differentiation. May 26, 1977; 8 (1): 9-19.


Differently sized rDNA repeating units of Xenopus laevis are arranged as internally homogeneous clusters along the nucleolar organizer., Junakovic N., Nucleic Acids Res. April 1, 1978; 5 (4): 1335-43.


Time-lapse cinemicrographic analysis of superficial cell behavior during and prior to gastrulation in Xenopus laevis., Keller RE., J Morphol. August 1, 1978; 157 (2): 223-247.


Further studies of the prospective fates of blastomeres at the 32-cell stage of Xenopus laevis embryos., Nakamura O., Med Biol. December 1, 1978; 56 (6): 355-60.


Cell number in relation to primary pattern formation in the embryo of Xenopus laevis. I. The cell cycle during new pattern formation in response to implanted organizers., Cooke J., J Embryol Exp Morphol. June 1, 1979; 51 165-82.


Multiple ribosomal gene sites revealed by in situ hybridization of Xenopus rDNA to Triturus lampbrush chromosomes., Morgan GT., Chromosoma. January 1, 1980; 80 (3): 309-30.


The karyotype of the hexaploid species Xenopus ruwenzoriensis Fischberg and Kobel (Anura: Pipidae)., Tymowska J., Cytogenet Cell Genet. January 1, 1980; 27 (1): 39-44.


Chromosome banding in amphibia. IV. Differentiation of GC- and AT-rich chromosome regions in Anura., Schmid M., Chromosoma. January 1, 1980; 77 (1): 83-103.


An interaction between dorsal and ventral regions of the marginal zone in early amphibian embryos., Slack JM., J Embryol Exp Morphol. April 1, 1980; 56 283-99.


The association of primary embryonic organizer activity with the future dorsal side of amphibian eggs and early embryos., Malacinski GM., Dev Biol. June 15, 1980; 77 (2): 449-62.


An atlas of notochord and somite morphogenesis in several anuran and urodelean amphibians., Youn BW., J Embryol Exp Morphol. October 1, 1980; 59 223-47.                        


The cellular basis of epiboly: an SEM study of deep-cell rearrangement during gastrulation in Xenopus laevis., Keller RE., J Embryol Exp Morphol. December 1, 1980; 60 201-34.


Substrate pathways demonstrated by transplanted Mauthner axons., Katz MJ., J Comp Neurol. February 1, 1981; 195 (4): 627-41.


An experimental analysis of the role of bottle cells and the deep marginal zone in gastrulation of Xenopus laevis., Keller RE., J Exp Zool. April 1, 1981; 216 (1): 81-101.


A comparison of the karyotype, constitutive heterochromatin, and nucleolar organizer regions of the new tetraploid species Xenopus epitropicalis Fischberg and Picard with those of Xenopus tropicalis Gray (Anura, Pipidae)., Tymowska J., Cytogenet Cell Genet. January 1, 1982; 34 (1-2): 149-57.


Development of the marginal zone in the rhombenecephalon of Xenopus laevis., Kevetter GA., Dev Biol. June 1, 1982; 256 (2): 195-208.


Conditioning of a culture substratum by the ectodermal layer promotes attachment and oriented locomotion by amphibian gastrula mesodermal cells., Nakatsuji N., J Cell Sci. January 1, 1983; 59 43-60.


Effects of inducers on inner and outer gastrula ectoderm layers of Xenopus laevis., Asashima M., Differentiation. January 1, 1983; 23 (3): 206-12.


Comparative study of extracellular fibrils on the ectodermal layer in gastrulae of five amphibian species., Nakatsuji N., J Cell Sci. January 1, 1983; 59 61-70.


Non-lymphoid cells of the anuran spleen: an ultrastructural study in the natterjack, Bufo calamita., García Barrutia MS., Am J Anat. May 1, 1983; 167 (1): 83-94.


Axis determination in eggs of Xenopus laevis: a critical period before first cleavage, identified by the common effects of cold, pressure and ultraviolet irradiation., Scharf SR., Dev Biol. September 1, 1983; 99 (1): 75-87.            


Silver positivity of the NORs during embryonic development of Xenopus laevis., De Capoa A., Exp Cell Res. September 1, 1983; 147 (2): 472-8.


Dorsalization and neural induction: properties of the organizer in Xenopus laevis., Smith JC., J Embryol Exp Morphol. December 1, 1983; 78 299-317.


Ultrastructural localization of nucleolar organizers during oogenesis in Xenopus laevis using a silver technique., Boloukhère M., J Cell Sci. January 1, 1984; 65 73-93.


Appearance and Distribution of RNA-Rich Cytoplasms in the Embryo of Xenopus laevis during Early Development: (germinal vesicle material/dorsal yolk-free cytoplasm/blastulation/mesoderm formation/Xenopus laevis)., Imoh H., Dev Growth Differ. January 1, 1984; 26 (2): 167-176.


Cell lineage analysis of neural induction: origins of cells forming the induced nervous system., Jacobson M., Dev Biol. March 1, 1984; 102 (1): 122-9.


Are the primordial germ cells (PGCs) in urodela formed by the inductive action of the vegetative yolk mass?, Michael P., Dev Biol. May 1, 1984; 103 (1): 109-16.


Stereotyped and variable growth of redirected Mauthner axons., Katz MJ., Dev Biol. July 1, 1984; 104 (1): 199-209.


Early cellular interactions promote embryonic axis formation in Xenopus laevis., Gimlich RL., Dev Biol. July 1, 1984; 104 (1): 117-30.


Identification and localization of a novel nucleolar protein of high molecular weight by a monoclonal antibody., Schmidt-Zachmann MS., Exp Cell Res. August 1, 1984; 153 (2): 327-46.


Localization and induction in early development of Xenopus., Gerhart JC., Philos Trans R Soc Lond B Biol Sci. December 4, 1984; 307 (1132): 319-30.


The development of the dendritic organization of primary and secondary motoneurons in the spinal cord of Xenopus laevis. An HRP study., van Mier P., Anat Embryol (Berl). January 1, 1985; 172 (3): 311-24.


Fibrillarin: a new protein of the nucleolus identified by autoimmune sera., Ochs RL., Biol Cell. January 1, 1985; 54 (2): 123-33.


U1 small nuclear RNA genes are subject to dosage compensation in mouse cells., Mangin M., Science. July 19, 1985; 229 (4710): 272-5.


Alterations in chromatin conformation are accompanied by reorganization of nonchromatin domains that contain U-snRNP protein p28 and nuclear protein p107., Smith HC., J Cell Biol. August 1, 1985; 101 (2): 560-7.


Cell lineage labels and region-specific markers in the analysis of inductive interactions., Smith JC., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 317-31.

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???