Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (7750) Expression Attributions Wiki
XB-ANAT-11

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Pattern regulation in the eyebud of Xenopus studied with a vital-dye fiber-tracing technique., O'Rourke NA., Dev Biol. April 1, 1986; 114 (2): 277-88.


Dynamic aspects of retinotectal map formation revealed by a vital-dye fiber-tracing technique., O'Rourke NA., Dev Biol. April 1, 1986; 114 (2): 265-76.


Metabolism of cerebrosides and sulfatides in the nervous system of Xenopus tadpole during metamorphosis., Okamura N., Neurochem Res. April 1, 1986; 11 (4): 557-65.


The inositol tris/tetrakisphosphate pathway--demonstration of Ins(1,4,5)P3 3-kinase activity in animal tissues., Irvine RF., Nature. April 17, 1986; 320 (6063): 631-4.


The ontogeny of androgen receptors in the CNS of Xenopus laevis frogs., Gorlick DL., Dev Biol. May 1, 1986; 391 (2): 193-200.


Stable accumulation of a rat truncated repeat transcript in Xenopus oocytes., Gutierrez-Hartmann A., Proc Natl Acad Sci U S A. May 1, 1986; 83 (10): 3106-10.


Synthesis of plasma proteins in fetal, adult, and neoplastic human brain tissue., Dziegielewska KM., Dev Biol. May 1, 1986; 115 (1): 93-104.


Expression of two proopiomelanocortin genes in the pituitary gland of Xenopus laevis: complete structures of the two preprohormones., Martens GJ., Nucleic Acids Res. May 12, 1986; 14 (9): 3791-8.


Neuronal changes in the forebrain of mice following penetration by regenerating olfactory axons., Graziadei PP., J Comp Neurol. May 15, 1986; 247 (3): 344-56.


The discontinuous visual projections on the Xenopus optic tectum following regeneration after unilateral nerve section., Willshaw DJ., J Embryol Exp Morphol. June 1, 1986; 94 121-37.


Selective binding of soybean agglutinin to the olfactory system of Xenopus., Key B., Neuroscience. June 1, 1986; 18 (2): 507-15.


Identification of a distinct 9S form of soluble clathrin in cultured cells and tissues., Bruder G., Exp Cell Res. June 1, 1986; 164 (2): 449-62.


A physiological measure of shifting connections in the Rana pipiens retinotectal system., Fraser SE., J Embryol Exp Morphol. June 1, 1986; 94 149-61.


The pituitary adrenocorticotropes originate from neural ridge tissue in Xenopus laevis., Eagleson GW., J Embryol Exp Morphol. June 1, 1986; 95 1-14.              


Melatonin: parallels in pineal gland and retina., Wiechmann AF., Exp Eye Res. June 1, 1986; 42 (6): 507-27.


Evidence for a common evolutionary origin of brain and pancreas cholecystokinin receptors., Vigna SR., Proc Natl Acad Sci U S A. June 1, 1986; 83 (12): 4355-9.


The distribution of interrenal stimulating activity in the brain of Xenopus laevis., Thurmond W., Gen Comp Endocrinol. July 1, 1986; 63 (1): 117-24.


gamma-Aminobutyric acid (GABA) uptake by Xenopus oocytes injected with rat brain mRNA., Sarthy V., Dev Biol. July 1, 1986; 387 (1): 97-100.


Glyceraldehyde-3-phosphate dehydrogenase is a nonhistone protein and a possible activator of transcription in neurons., Morgenegg G., J Neurochem. July 1, 1986; 47 (1): 54-62.


Normal maturation involves systematic changes in binocular visual connections in Xenopus laevis., Grant S., Nature. July 17, 1986; 322 (6076): 258-61.


Induction of neural cell adhesion molecule (NCAM) in Xenopus embryos., Jacobson M., Dev Biol. August 1, 1986; 116 (2): 524-31.            


Actions of pentobarbital on rat brain receptors expressed in Xenopus oocytes., Parker I., J Neurosci. August 1, 1986; 6 (8): 2290-7.


Descending projections and excitation during fictive swimming in Xenopus embryos: neuroanatomy and lesion experiments., Roberts A., J Comp Neurol. August 8, 1986; 250 (2): 253-61.


Optic fibers follow aberrant pathways from rotated eyes in Xenopus laevis., Grant P., J Comp Neurol. August 15, 1986; 250 (3): 364-76.


Purification and characterization of a novel neurotensin-degrading peptidase from rat brain synaptic membranes., Checler F., J Biol Chem. August 25, 1986; 261 (24): 11274-81.


Expression of functional sodium channels from cloned cDNA., Noda M., Nature. August 28, 1986; 322 (6082): 826-8.


The use of mRNA translation in vitro and in ovo followed by crossed immunoelectrophoretic autoradiography to study the biosynthesis of human cholinesterases., Soreq H., Cell Mol Neurobiol. September 1, 1986; 6 (3): 227-37.


The retinotectal projection of quarter eyes in Xenopus laevis., Degen N., Dev Biol. September 1, 1986; 394 (1): 141-3.


Regulation of melanotropin release from the pars intermedia of the amphibian Xenopus laevis: evaluation of the involvement of serotonergic, cholinergic, or adrenergic receptor mechanisms., Verburg-van Kemenade BM., Gen Comp Endocrinol. September 1, 1986; 63 (3): 471-80.


The appearance and distribution of intermediate filament proteins during differentiation of the central nervous system, skin and notochord of Xenopus laevis., Godsave SF., J Embryol Exp Morphol. September 1, 1986; 97 201-23.              


Induction of taurine responsiveness in Xenopus oocytes by messenger RNA from mouse brain., Asanuma A., Neurosci Lett. September 12, 1986; 69 (3): 249-53.


Messenger RNA coding for only the alpha subunit of the rat brain Na channel is sufficient for expression of functional channels in Xenopus oocytes., Goldin AL., Proc Natl Acad Sci U S A. October 1, 1986; 83 (19): 7503-7.


Tunicamycin-induced dysgenesis of retinal rod outer segment membranes. II. Quantitative freeze-fracture analysis., Defoe DM., Invest Ophthalmol Vis Sci. November 1, 1986; 27 (11): 1595-601.


Prospective Neural Areas and Their Morphogenetic Movements during Neural Plate Formation of Xenopus Embryos. I. Development of Vegetal Half Embryos and Chimera Embryos: (developmental fates/cell marker, quinacrine/Xenopus embryo)., Suzuki AS., Dev Growth Differ. November 1, 1986; 28 (6): 519-529.


Neurotensin and substance P receptors expressed in Xenopus oocytes by messenger RNA from rat brain., Parker I., Proc R Soc Lond B Biol Sci. November 22, 1986; 229 (1255): 151-9.


Control of neuron shape during development and regeneration., Cohen MJ., Neurochem Pathol. December 1, 1986; 5 (3): 331-43.


Involvement of a GTP-binding protein in mediation of serotonin and acetylcholine responses in Xenopus oocytes injected with rat brain messenger RNA., Dascal N., Dev Biol. December 1, 1986; 387 (3): 201-9.


A glia-derived neurite promoting factor with protease inhibitory activity belongs to the protease nexins., Gloor S., Cell. December 5, 1986; 47 (5): 687-93.


Differential and stage-related expression in embryonic tissues of a new human homoeobox gene., Mavilio F., Nature. December 18, 1986; 324 (6098): 664-8.


Isolation of immunoreactive beta-endorphin-related and Met-enkephalin-related peptides from the posterior pituitary of the amphibian, Xenopus laevis., Dores RM., Peptides. January 1, 1987; 8 (6): 1119-25.


Regulation of MSH release from the neurointermediate lobe of Xenopus laevis by CRF-like peptides., Verburg-Van Kemenade BM., Peptides. January 1, 1987; 8 (6): 1093-100.


Observations on the development of cerebellar afferents in Xenopus laevis., van der Linden JA., Anat Embryol (Berl). January 1, 1987; 176 (4): 431-9.


The trochlear nerve of amphibians and its relation to proprioceptive fibers: a qualitative and quantitative HRP study., Fritzsch B., Anat Embryol (Berl). January 1, 1987; 177 (2): 105-14.


Assessment of TRH as a potential MSH release stimulating factor in Xenopus laevis., Verburg-van Kemenade BM., Peptides. January 1, 1987; 8 (1): 69-76.


Biosynthesis of the neurofilament heavy subunit in Xenopus oocytes microinjected with rat brain poly(A)+ RNA., Cross D., Mol Biol Rep. January 1, 1987; 12 (4): 265-71.


An NPY-like peptide may function as MSH-release inhibiting factor in Xenopus laevis., Verburg-van Kemenade BM., Peptides. January 1, 1987; 8 (1): 61-7.


[Melanotropic activity in the hypophysis and blood of rats in the early postnatal period]., Panova IG., Dokl Akad Nauk SSSR. January 1, 1987; 295 (5): 1258-60.


The use of Xenopus oocytes for the study of ion channels., Dascal N., CRC Crit Rev Biochem. January 1, 1987; 22 (4): 317-87.


Expression of rat brain excitatory amino acid receptors in Xenopus oocytes., Lampe RA., Adv Exp Med Biol. January 1, 1987; 221 201-10.


Structure and function of sodium channel., Noda M., J Recept Res. January 1, 1987; 7 (1-4): 467-97.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ???pagination.result.next???