Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (109) Attributions Wiki
XB-STAGE-61

Papers associated with NF stage 47

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles., GURDON JB., J Embryol Exp Morphol. June 1, 1962; 10 622-40.  


Electron microscopic study on the early histogenesis of thymus in the toad, Xenopus laevis., Nagata S., Cell Tissue Res. March 30, 1977; 179 (1): 87-96.


Development of the optic nerve in Xenopus laevis. II. Gliogenesis, myelination and metamorphic remodelling., Cima C, Grant P., J Embryol Exp Morphol. December 1, 1982; 72 251-67.


Endogenous electrical current leaves the limb and prelimb region of the Xenopus embryo., Robinson KR., Dev Biol. May 1, 1983; 97 (1): 203-11.


Early development of descending pathways from the brain stem to the spinal cord in Xenopus laevis., van Mier P, ten Donkelaar HJ., Anat Embryol (Berl). January 1, 1984; 170 (3): 295-306.


Occurrence of a species-specific nuclear antigen in the germ line of Xenopus and its expression from paternal genes in hybrid frogs., Wedlich D, Dreyer C, Hausen P., Dev Biol. March 1, 1985; 108 (1): 220-34.                


Growth and death of cells of the mesencephalic fifth nucleus in Xenopus laevis larvae., Kollros JJ, Thiesse ML., J Comp Neurol. March 22, 1985; 233 (4): 481-9.


Cell type-specific expression of nuclear lamina proteins during development of Xenopus laevis., Benavente R, Krohne G, Franke WW., Cell. May 1, 1985; 41 (1): 177-90.                      


Cytological analyses of factors which determine the number of primordial germ cells (PGCs) in Xenopus laevis., Akita Y, Wakahara M., J Embryol Exp Morphol. December 1, 1985; 90 251-65.


Embryonic and regenerating Xenopus retinal fibers are intrinsically different., Grant P, Tseng Y., Dev Biol. April 1, 1986; 114 (2): 475-91.


The development of the static vestibulo-ocular reflex in the southern clawed toad, Xenopus laevis. II. Animals with acute vestibular lesions., Horn E, Mack R, Lang HG., J Comp Physiol A. December 1, 1986; 159 (6): 879-85.


Early development of two types of nicotinic acetylcholine receptors., Leonard RJ, Nakajima S, Nakajima Y, Carlson CG., J Neurosci. November 1, 1988; 8 (11): 4038-48.


Changes in kinetics of acetylcholine receptor channels after initial expression in Xenopus myocyte culture., Rohrbough J, Kidokoro Y., J Physiol. June 1, 1990; 425 245-69.


Developmental changes in the half-life of acetylcholine receptors in the myotomal muscle of Xenopus laevis., Cohen MW, Frair PF, Cantin C, Hébert G., J Physiol. July 1, 1990; 426 281-96.


Correlated onset and patterning of proopiomelanocortin gene expression in embryonic Xenopus brain and pituitary., Hayes WP, Loh YP., Development. November 1, 1990; 110 (3): 747-57.              


Differential expression of two cadherins in Xenopus laevis., Angres B, Müller AH, Kellermann J, Hausen P., Development. March 1, 1991; 111 (3): 829-44.                    


Transgenic Xenopus laevis tadpoles: a transient in vivo model system for the manipulation of lens function and lens development., Brakenhoff RH, Ruuls RC, Jacobs EH, Schoenmakers JG, Lubsen NH., Nucleic Acids Res. March 25, 1991; 19 (6): 1279-84.


Muscle opacity (mo), a new mutant gene in Xenopus laevis, linked to the rusty locus., Droin A., Genet Res. June 1, 1991; 57 (3): 279-82.


Hyaluronan as a propellant for epithelial movement: the development of semicircular canals in the inner ear of Xenopus., Haddon CM, Lewis JH., Development. June 1, 1991; 112 (2): 541-50.                          


The influence of the olfactory placode on the development of the telencephalon in Xenopus laevis., Graziadei PP, Monti-Graziadei AG., Neuroscience. January 1, 1992; 46 (3): 617-29.


Xlcaax-1 is localized to the basolateral membrane of kidney tubule and other polarized epithelia during Xenopus development., Cornish JA, Kloc M, Decker GL, Reddy BA, Etkin LD., Dev Biol. March 1, 1992; 150 (1): 108-20.                  


An autoradiographic time study during regeneration in fully differentiated Xenopus eyes., Underwood LW, Ide CF., J Exp Zool. May 1, 1992; 262 (2): 193-201.


Spatial, temporal, and hormonal regulation of epidermal keratin expression during development of the frog, Xenopus laevis., Nishikawa A, Shimizu-Nishikawa K, Miller L., Dev Biol. May 1, 1992; 151 (1): 145-53.                


[Immunohistochemical and morphometric studies on the development of the thyroid, parathyroid and ultimobranchial body in Xenopus laevis Daudin]., Honda J, Ogawa K, Taniguchi K., Jikken Dobutsu. January 1, 1993; 42 (1): 23-32.


A discrete group of melanin containing cells are coincident with a major reorganization of retinal ganglion cell axons in the optic nerve of Xenopus., Taylor JS., J Neurocytol. November 1, 1993; 22 (11): 1007-16.


Overexpression of a cellular retinoic acid binding protein (xCRABP) causes anteroposterior defects in developing Xenopus embryos., Dekker EJ, Vaessen MJ, van den Berg C, Timmermans A, Godsave S, Holling T, Nieuwkoop P, Geurts van Kessel A, Durston A., Development. April 1, 1994; 120 (4): 973-85.                


Effect of an inhibitory mutant of the FGF receptor on mesoderm-derived alpha-smooth muscle actin-expressing cells in Xenopus embryo., Saint-Jeannet JP, Thiery JP, Koteliansky VE., Dev Biol. August 1, 1994; 164 (2): 374-82.          


Comparative analysis of Engrailed-1 and Wnt-1 expression in the developing central nervous system of Xenopus laevis., Eizema K, Koster JG, Stegeman BI, Baarends WM, Lanser PH, Destrée OH., Int J Dev Biol. December 1, 1994; 38 (4): 623-32.


Immunohistochemical studies on the development of the hypothalamo-hypophysial system in Xenopus laevis., Ogawa K, Suzuki E, Taniguchi K., Anat Rec. February 1, 1995; 241 (2): 244-54.


Patterning of the mesoderm in Xenopus: dose-dependent and synergistic effects of Brachyury and Pintallavis., O'Reilly MA, Smith JC, Cunliffe V., Development. May 1, 1995; 121 (5): 1351-9.                  


Localized BMP-4 mediates dorsal/ventral patterning in the early Xenopus embryo., Schmidt JE, Suzuki A, Ueno N, Kimelman D., Dev Biol. May 1, 1995; 169 (1): 37-50.              


Development of the Xenopus pronephric system., Vize PD, Jones EA, Pfister R., Dev Biol. October 1, 1995; 171 (2): 531-40.              


Molecular cloning of cDNA encoding the Xenopus homolog of mammalian RelB., Suzuki K, Yamamoto T, Inoue J., Nucleic Acids Res. November 25, 1995; 23 (22): 4664-9.


Androgen biosynthesis and secretion in developing Xenopus laevis., Kang L, Marin M, Kelley D., Gen Comp Endocrinol. December 1, 1995; 100 (3): 293-307.


Differential effects of retinoic acid and a retinoid antagonist on the spatial distribution of the homeoprotein Hoxb-7 in vertebrate embryos., López SL, Dono R, Zeller R, Carrasco AE., Dev Dyn. December 1, 1995; 204 (4): 457-71.      


A monoclonal antibody against neural crest-stage Xenopus laevis lectin perturbs craniofacial development of Xenopus., Evanson JE, Milos NC., J Craniofac Genet Dev Biol. January 1, 1996; 16 (2): 74-93.


Zn(2+)-induction of metallothionein in myotomal cell nuclei during somitogenesis of Xenopus laevis., Sunderman FW, Grbac-Ivankovic S, Plowman MR, Davis M., Mol Reprod Dev. April 1, 1996; 43 (4): 444-51.


An indelible lineage marker for Xenopus using a mutated green fluorescent protein., Zernicka-Goetz M, Pines J, Ryan K, Siemering KR, Haseloff J, Evans MJ, Gurdon JB., Development. December 1, 1996; 122 (12): 3719-24.        


Inhibition of retinoic acid receptor-mediated signalling alters positional identity in the developing hindbrain., van der Wees J, Schilthuis JG, Koster CH, Diesveld-Schipper H, Folkers GE, van der Saag PT, Dawson MI, Shudo K, van der Burg B, Durston AJ., Development. February 1, 1998; 125 (3): 545-56.              


Metamorphosis-associated and region-specific expression of calbindin gene in the posterior intestinal epithelium of Xenopus laevis larva., Amano T, Noro N, Kawabata H, Kobayashi Y, Yoshizato K., Dev Growth Differ. April 1, 1998; 40 (2): 177-88.                


Alcohol dehydrogenases in Xenopus development: conserved expression of ADH1 and ADH4 in epithelial retinoid target tissues., Hoffmann I, Ang HL, Duester G., Dev Dyn. November 1, 1998; 213 (3): 261-70.        


Amphibian embryos as a model system for organ engineering: in vitro induction and rescue of the heart anlage., Grunz H., Int J Dev Biol. July 1, 1999; 43 (4): 361-4.        


Ontogeny of circadian and light regulation of melatonin release in Xenopus laevis embryos., Green CB, Liang MY, Steenhard BM, Besharse JC., Brain Res Dev Brain Res. October 20, 1999; 117 (1): 109-16.


Expression of Xenopus Daz-like protein during gametogenesis and embryogenesis., Mita K, Yamashita M., Mech Dev. June 1, 2000; 94 (1-2): 251-5.      


Conservation of sequence and expression of Xenopus and zebrafish dHAND during cardiac, branchial arch and lateral mesoderm development., Angelo S, Lohr J, Lee KH, Ticho BS, Breitbart RE, Hill S, Yost HJ, Srivastava D., Mech Dev. July 1, 2000; 95 (1-2): 231-7.                            


Zic3 is involved in the left-right specification of the Xenopus embryo., Kitaguchi T, Nagai T, Nakata K, Aruga J, Mikoshiba K., Development. November 1, 2000; 127 (22): 4787-95.              


Expression of atrial natriuretic factor (ANF) during Xenopus cardiac development., Small EM, Krieg PA., Dev Genes Evol. December 1, 2000; 210 (12): 638-40.


Action of valproic acid on Xenopus laevis development: teratogenic effects on eyes., Pennati R, Groppelli S, de Bernardi F, Sotgia C., Teratog Carcinog Mutagen. January 1, 2001; 21 (2): 121-33.


The vegetally localized mRNA fatvg is associated with the germ plasm in the early embryo and is later expressed in the fat body., Chan AP, Kloc M, Bilinski S, Etkin LD., Mech Dev. January 1, 2001; 100 (1): 137-40.          


Origins of inner ear sensory organs revealed by fate map and time-lapse analyses., Kil SH, Collazo A., Dev Biol. May 15, 2001; 233 (2): 365-79.              

???pagination.result.page??? 1 2 3 ???pagination.result.next???