Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (327) Expression Attributions Wiki
XB-ANAT-452

Papers associated with melanophore

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Distribution of pro-opiomelanocortin and its peptide end products in the brain and hypophysis of the aquatic toad, Xenopus laevis., Tuinhof R., Cell Tissue Res. May 1, 1998; 292 (2): 251-65.


Mapping the melatonin receptor. 5. Melatonin agonists and antagonists derived from tetrahydrocyclopent[b]indoles, tetrahydrocarbazoles and hexahydrocyclohept[b]indoles., Davies DJ., J Med Chem. February 12, 1998; 41 (4): 451-67.


Interaction of Agouti protein with the melanocortin 1 receptor in vitro and in vivo., Ollmann MM., Genes Dev. February 1, 1998; 12 (3): 316-30.


Paraxial-fated mesoderm is required for neural crest induction in Xenopus embryos., Bonstein L., Dev Biol. January 15, 1998; 193 (2): 156-68.            


In vitro motility assay for melanophore pigment organelles., Rogers SL., Methods Enzymol. January 1, 1998; 298 361-72.


Functional screening of multiuse peptide libraries using melanophore bioassay., Jayawickreme CK., Methods Mol Biol. January 1, 1998; 87 119-28.


Functional analysis by imaging of melanophore pigment dispersion of chimeric receptors constructed by recombinant polymerase chain reaction., McClintock TS., Brain Res Brain Res Protoc. December 1, 1997; 2 (1): 59-68.


Background adaptation by Xenopus laevis: a model for studying neuronal information processing in the pituitary pars intermedia., Roubos EW., Comp Biochem Physiol A Physiol. November 1, 1997; 118 (3): 533-50.


Deciphering posttranslational processing events in the pituitary of a neopterygian fish: cloning of a gar proopiomelanocortin cDNA., Dores RM., Gen Comp Endocrinol. September 1, 1997; 107 (3): 401-13.


Sauvagine and TRH differentially stimulate proopiomelanocortin biosynthesis in the Xenopus laevis intermediate pituitary., Dotman CH., Neuroendocrinology. August 1, 1997; 66 (2): 106-13.


Novel isoforms of Mel1c melatonin receptors modulating intracellular cyclic guanosine 3',5'-monophosphate levels., Jockers R., Mol Endocrinol. July 1, 1997; 11 (8): 1070-81.


Physiologically induced Fos expression in the hypothalamo-hypophyseal system of Xenopus laevis., Ubink R., Neuroendocrinology. June 1, 1997; 65 (6): 413-22.


Immunocytochemical localization of prohormone convertases PC1 and PC2 in the anuran pituitary gland: subcellular localization in corticotrope and melanotrope cells., Kurabuchi S., Cell Tissue Res. June 1, 1997; 288 (3): 485-96.


Regulated bidirectional motility of melanophore pigment granules along microtubules in vitro., Rogers SL., Proc Natl Acad Sci U S A. April 15, 1997; 94 (8): 3720-5.        


The cellular patterns of BDNF and trkB expression suggest multiple roles for BDNF during Xenopus visual system development., Cohen-Cory S., Dev Biol. October 10, 1996; 179 (1): 102-15.              


Light-sensitive response in melanophores of Xenopus laevis: II.Rho is involved in light-induced melanin aggregation., Miyashita Y., J Exp Zool. October 1, 1996; 276 (2): 125-31.


Analogues of diverse structure are unable to differentiate native melatonin receptors in the chicken retina, sheep pars tuberalis and Xenopus melanophores., Pickering H., Br J Pharmacol. September 1, 1996; 119 (2): 379-87.


Light-sensitive response in melanophores of Xenopus laevis: I. Spectral characteristics of melanophore response in isolated tail fin of Xenopus tadpole., Moriya T., J Exp Zool. September 1, 1996; 276 (1): 11-8.


Synthesis of 2-amido-2,3-dihydro-1H-phenalene derivatives as new conformationally restricted ligands for melatonin receptors., Mathé-Allainmat M., J Med Chem. August 2, 1996; 39 (16): 3089-95.


Cloning and sequence analysis of a hypothalamic cDNA encoding a D1c dopamine receptor in tilapia., Lamers AE., Biochim Biophys Acta. July 31, 1996; 1308 (1): 17-22.


Synthesis and characterization of bivalent peptide ligands targeted to G-protein-coupled receptors., Carrithers MD., Chem Biol. July 1, 1996; 3 (7): 537-42.


Melanophore pigment dispersion responses to agonists show two patterns of sensitivity to inhibitors of cAMP-dependent protein kinase and protein kinase C., McClintock TS., J Cell Physiol. April 1, 1996; 167 (1): 1-7.


Background adaptation and synapse plasticity in the pars intermedia of Xenopus laevis., Berghs CA., Neuroscience. February 1, 1996; 70 (3): 833-41.


Neural crest cell migration and pigment pattern formation in urodele amphibians., Epperlein HH., Int J Dev Biol. February 1, 1996; 40 (1): 229-38.


Molecular probing of the secretory pathway in peptide hormone-producing cells., Holthuis JC., J Cell Sci. October 1, 1995; 108 ( Pt 10) 3295-305.


Mapping the melatonin receptor. 3. Design and synthesis of melatonin agonists and antagonists derived from 2-phenyltryptamines., Garratt PJ., J Med Chem. March 31, 1995; 38 (7): 1132-9.


Combinatorial diffusion assay used to identify topically active melanocyte-stimulating hormone receptor antagonists., Quillan JM., Proc Natl Acad Sci U S A. March 28, 1995; 92 (7): 2894-8.            


Structural requirements at the melatonin receptor., Sugden D., Br J Pharmacol. February 1, 1995; 114 (3): 618-23.


Discovery and structure-function analysis of alpha-melanocyte-stimulating hormone antagonists., Jayawickreme CK., J Biol Chem. November 25, 1994; 269 (47): 29846-54.


A rapid bioassay for platelet-derived growth factor beta-receptor tyrosine kinase function., Graminski GF., Biotechnology (N Y). October 1, 1994; 12 (10): 1008-11.


The secretion of alpha-MSH from xenopus melanotropes involves calcium influx through omega-conotoxin-sensitive voltage-operated calcium channels., Scheenen WJ., J Neuroendocrinol. August 1, 1994; 6 (4): 457-64.


Involvement of retinohypothalamic input, suprachiasmatic nucleus, magnocellular nucleus and locus coeruleus in control of melanotrope cells of Xenopus laevis: a retrograde and anterograde tracing study., Tuinhof R., Neuroscience. July 1, 1994; 61 (2): 411-20.


Action of stimulatory and inhibitory alpha-MSH secretagogues on spontaneous calcium oscillations in melanotrope cells of Xenopus laevis., Scheenen WJ., Pflugers Arch. June 1, 1994; 427 (3-4): 244-51.


N-acyl-3-amino-5-methoxychromans: a new series of non-indolic melatonin analogues., Sugden D., Eur J Pharmacol. March 21, 1994; 254 (3): 271-5.


Functional expression and characterization of human D2 and D3 dopamine receptors., Potenza MN., J Neurosci. March 1, 1994; 14 (3 Pt 2): 1463-76.


Characterization of a serotonin receptor endogenous to frog melanophores., Potenza MN., Naunyn Schmiedebergs Arch Pharmacol. January 1, 1994; 349 (1): 11-9.


Basic fibroblast growth factor induces differentiation of neural tube and neural crest lineages of cultured ectoderm cells from Xenopus gastrula., Kengaku M., Development. December 1, 1993; 119 (4): 1067-78.


Cloning and characterization of an endothelin-3 specific receptor (ETC receptor) from Xenopus laevis dermal melanophores., Karne S., J Biol Chem. September 5, 1993; 268 (25): 19126-33.                


Immunocytochemistry and in situ hybridization of neuropeptide Y in the hypothalamus of Xenopus laevis in relation to background adaptation., Tuinhof R., Neuroscience. August 1, 1993; 55 (3): 667-75.


Probing the functions of endogenous lectins: effects of a monoclonal antibody against the neural crest-stage lectin of Xenopus laevis on trunk development., Milos NC., J Exp Zool. July 1, 1993; 266 (3): 240-7.


Dual action of GABAA receptors on the secretory process of melanotrophs of Xenopus laevis., Jenks BG., Neuroendocrinology. July 1, 1993; 58 (1): 80-5.


Melatonin-induced desensitization in amphibian melanophores., Rollag MD., J Exp Zool. April 1, 1993; 265 (5): 488-95.


A rapid quantitative bioassay for evaluating the effects of ligands upon receptors that modulate cAMP levels in a melanophore cell line., Potenza MN., Pigment Cell Res. December 1, 1992; 5 (6): 372-8.


Protein kinase C activation antagonizes melatonin-induced pigment aggregation in Xenopus laevis melanophores., Sugden D., J Cell Biol. December 1, 1992; 119 (6): 1515-21.


Intrinsic pigment-cell stimulating activity in the catfish integument., Zuasti A., Pigment Cell Res. November 1, 1992; 5 (5 Pt 1): 253-62.


A method for evaluating the effects of ligands upon Gs protein-coupled receptors using a recombinant melanophore-based bioassay., Potenza MN., Anal Biochem. November 1, 1992; 206 (2): 315-22.


Analysis of autofeedback mechanisms in the secretion of pro-opiomelanocortin-derived peptides by melanotrope cells of Xenopus laevis., de Koning HP., Gen Comp Endocrinol. September 1, 1992; 87 (3): 394-401.


The protein-phosphatase inhibitor okadaic acid mimics MSH-induced and melatonin-reversible melanosome dispersion in Xenopus laevis melanophores., Cozzi B., Pigment Cell Res. September 1, 1992; 5 (3): 148-54.


Structure and expression of Xenopus prohormone convertase PC2., Braks JA., FEBS Lett. June 22, 1992; 305 (1): 45-50.


Comparative structural analysis of the transcriptionally active proopiomelanocortin genes A and B of Xenopus laevis., Deen PM., Mol Biol Evol. May 1, 1992; 9 (3): 483-94.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???