Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (327) Expression Attributions Wiki
XB-ANAT-452

Papers associated with melanophore

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Regulation of TNF-alpha secretion by a specific melanocortin-1 receptor peptide agonist., Ignar DM., Peptides. May 1, 2003; 24 (5): 709-16.


Ca2+ oscillations in melanotropes of Xenopus laevis: their generation, propagation, and function., Jenks BG., Gen Comp Endocrinol. May 1, 2003; 131 (3): 209-19.


Environmental estrogens alter early development in Xenopus laevis., Bevan CL., Environ Health Perspect. April 1, 2003; 111 (4): 488-96.


Differential distribution of melatonin receptors in the pituitary gland of Xenopus laevis., Wiechmann AF., Anat Embryol (Berl). March 1, 2003; 206 (4): 291-9.


Dynactin is required for bidirectional organelle transport., Deacon SW., J Cell Biol. February 3, 2003; 160 (3): 297-301.      


Exposure to the polychlorinated biphenyl mixture Aroclor 1254 alters melanocyte and tail muscle morphology in developing Xenopus laevis tadpoles., Fisher MA., Environ Toxicol Chem. February 1, 2003; 22 (2): 321-8.


Alpha-melanophore-stimulating hormone in the brain, cranial placode derivatives, and retina of Xenopus laevis during development in relation to background adaptation., Kramer BM., J Comp Neurol. January 27, 2003; 456 (1): 73-83.                  


Maxadilan activates PAC1 receptors expressed in Xenopus laevis xelanophores., Pereira P., Pigment Cell Res. December 1, 2002; 15 (6): 461-6.


Demonstration of postsynaptic receptor plasticity in an amphibian neuroendocrine interface., Jenks BG., J Neuroendocrinol. November 1, 2002; 14 (11): 843-5.


Characterization and functional expression of cDNAs encoding thyrotropin-releasing hormone receptor from Xenopus laevis., Bidaud I., Eur J Biochem. September 1, 2002; 269 (18): 4566-76.


Melanophore aggregation in strong static magnetic fields., Testorf MF., Bioelectromagnetics. September 1, 2002; 23 (6): 444-9.


New aspects of signal transduction in the Xenopus laevis melanotrope cell., Roubos EW., Gen Comp Endocrinol. May 1, 2002; 126 (3): 255-60.


Multiple control and dynamic response of the Xenopus melanotrope cell., Kolk SM., Comp Biochem Physiol B Biochem Mol Biol. May 1, 2002; 132 (1): 257-68.


Evidence that brain-derived neurotrophic factor acts as an autocrine factor on pituitary melanotrope cells of Xenopus laevis., Kramer BM., Endocrinology. April 1, 2002; 143 (4): 1337-45.


Biosensing of opioids using frog melanophores., Karlsson AM., Biosens Bioelectron. April 1, 2002; 17 (4): 331-5.


Interactions and regulation of molecular motors in Xenopus melanophores., Gross SP., J Cell Biol. March 4, 2002; 156 (5): 855-65.                  


Identification of 3,4-didehydroretinal isomers in the Xenopus tadpole tail fin containing photosensitive melanophores., Okano K., Zoolog Sci. February 1, 2002; 19 (2): 191-5.


Expression of opsin molecule in cultured murine melanocyte., Miyashita Y., J Investig Dermatol Symp Proc. November 1, 2001; 6 (1): 54-7.


Synthesis of new tricyclic melatoninergic ligands., Tsotinis A., Farmaco. September 1, 2001; 56 (9): 725-9.


Efficient, long-term transgene expression in Xenopus laevis dermal melanophores., Gatlin J., Pigment Cell Res. August 1, 2001; 14 (4): 275-82.


Dynamics and plasticity of peptidergic control centres in the retino-brain-pituitary system of Xenopus laevis., Kramer BM., Microsc Res Tech. August 1, 2001; 54 (3): 188-99.


Physiological control of Xunc18 expression in neuroendocrine melanotrope cells of Xenopus laevis., Kolk SM., Endocrinology. May 1, 2001; 142 (5): 1950-7.


Functional organization of the suprachiasmatic nucleus of Xenopus laevis in relation to background adaptation., Kramer BM., J Comp Neurol. April 9, 2001; 432 (3): 346-55.                    


An endogenous 5-HT(7) receptor mediates pigment granule dispersion in Xenopus laevis melanophores., Teh MT., Br J Pharmacol. April 1, 2001; 132 (8): 1799-808.


Synthesis of phenalene and acenaphthene derivatives as new conformationally restricted ligands for melatonin receptors., Jellimann C., J Med Chem. November 2, 2000; 43 (22): 4051-62.


Structure, biological activity of the upstream regulatory sequence, and conserved domains of a middle molecular mass neurofilament gene of Xenopus laevis., Roosa JR., Brain Res Mol Brain Res. October 20, 2000; 82 (1-2): 35-51.            


Dynein, dynactin, and kinesin II's interaction with microtubules is regulated during bidirectional organelle transport., Reese EL., J Cell Biol. October 2, 2000; 151 (1): 155-66.              


Melanization stimulating factors in the integument of the Mugil cephalus and Dicertranchus labrax., Zuasti A., Histol Histopathol. October 1, 2000; 15 (4): 1145-50.


Serological cloning of a melanocyte rab guanosine 5'-triphosphate-binding protein and a chromosome condensation protein from a melanoma complementary DNA library., Jäger D., Cancer Res. July 1, 2000; 60 (13): 3584-91.


Melanophore lineage and clonal organization of the epidermis in Xenopus embryos as revealed by expression of a biogenic marker, GFP., Fukuzawa T., Pigment Cell Res. June 1, 2000; 13 (3): 151-7.


Pharmacological characterization of receptor-activity-modifying proteins (RAMPs) and the human calcitonin receptor., Armour SL., J Pharmacol Toxicol Methods. December 1, 1999; 42 (4): 217-24.


Use of a cell-based, lawn format assay to rapidly screen a 442,368 bead-based peptide library., Jayawickreme CK., J Pharmacol Toxicol Methods. December 1, 1999; 42 (4): 189-97.


Effect of colcemid on the centrosome and microtubules in dermal melanophores of Xenopus laevis larvae in vivo., Rubin KA., Cell Mol Biol (Noisy-le-grand). November 1, 1999; 45 (7): 1099-117.


Effects of regulators of G protein-signaling proteins on the functional response of the mu-opioid receptor in a melanophore-based assay., Potenza MN., J Pharmacol Exp Ther. November 1, 1999; 291 (2): 482-91.


Regulation of melanosome movement in the cell cycle by reversible association with myosin V., Rogers SL., J Cell Biol. September 20, 1999; 146 (6): 1265-76.              


Characterization of the cloned guinea pig leukotriene B4 receptor: comparison to its human orthologue., Boie Y., Eur J Pharmacol. September 10, 1999; 380 (2-3): 203-13.


Adrenomedullin in nonmammalian vertebrate pancreas: an immunocytochemical study., López J., Gen Comp Endocrinol. September 1, 1999; 115 (3): 309-22.          


Molecular cloning and characterization of the chicken pro-opiomelanocortin (POMC) gene., Takeuchi S., Biochim Biophys Acta. July 8, 1999; 1450 (3): 452-9.


Functional characterization of a receptor for vasoactive-intestinal-peptide-related peptides in cultured dermal melanophores from Xenopus laevis., Marotti LA., Pigment Cell Res. April 1, 1999; 12 (2): 89-97.


Identification of a GABAB receptor subunit, gb2, required for functional GABAB receptor activity., Ng GY., J Biol Chem. March 19, 1999; 274 (12): 7607-10.


Cloning of a novel G-protein-coupled receptor GPR 51 resembling GABAB receptors expressed predominantly in nervous tissues and mapped proximal to the hereditary sensory neuropathy type 1 locus on chromosome 9., Ng GY., Genomics. March 15, 1999; 56 (3): 288-95.


Amphibian Melanophore Technology as a Functional Screen for Antagonists of G-Protein Coupled 7-Transmembrane Receptors., Nuttall ME., J Biomol Screen. January 1, 1999; 4 (5): 269-278.


Design of subtype selective melatonin receptor agonists and antagonists., Sugden D., Reprod Nutr Dev. January 1, 1999; 39 (3): 335-44.


Heterotrimeric kinesin II is the microtubule motor protein responsible for pigment dispersion in Xenopus melanophores., Tuma MC., J Cell Biol. December 14, 1998; 143 (6): 1547-58.            


Molecular characterization and expression of cloned human galanin receptors GALR2 and GALR3., Kolakowski LF., J Neurochem. December 1, 1998; 71 (6): 2239-51.


Dynamics of proopiomelanocortin and prohormone convertase 2 gene expression in Xenopus melanotrope cells during long-term background adaptation., Dotman CH., J Endocrinol. November 1, 1998; 159 (2): 281-6.


The melanogenic system of Xenopus laevis., Zuasti A., Arch Histol Cytol. October 1, 1998; 61 (4): 305-16.


Cloning and expression of two proopiomelanocortin mRNAs in the common carp (Cyprinus carpio L.)., Arends RJ., Mol Cell Endocrinol. August 25, 1998; 143 (1-2): 23-31.


Regulation of organelle movement in melanophores by protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2A (PP2A)., Reilein AR., J Cell Biol. August 10, 1998; 142 (3): 803-13.            


Identification of suprachiasmatic melanotrope-inhibiting neurons in Xenopus laevis: a confocal laser-scanning microscopy study., Ubink R., J Comp Neurol. July 20, 1998; 397 (1): 60-8.          

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???