Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (327) Expression Attributions Wiki
XB-ANAT-452

Papers associated with melanophore

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Brain distribution and evidence for both central and neurohormonal actions of cocaine- and amphetamine-regulated transcript peptide in Xenopus laevis., Roubos EW., J Comp Neurol. April 1, 2008; 507 (4): 1622-38.                  


Bone morphogenetic protein-4 and Noggin signaling regulates pigment cell distribution in the axolotl trunk., Hess K., Differentiation. February 1, 2008; 76 (2): 206-18.


Mitf contributes to melanosome distribution and melanophore dendricity., Kawasaki A., Pigment Cell Melanoma Res. February 1, 2008; 21 (1): 56-62.


Design, synthesis, and melatoninergic activity of new azido- and isothiocyanato-substituted indoles., Tsotinis A., J Med Chem. December 13, 2007; 50 (25): 6436-40.


Rab32 regulates melanosome transport in Xenopus melanophores by protein kinase a recruitment., Park M., Curr Biol. December 4, 2007; 17 (23): 2030-4.


Design and synthesis of new N-OMe fluoro-indole melatoninergics., Tsotinis A., Med Chem. November 1, 2007; 3 (6): 561-71.


7-Substituted-melatonin and 7-substituted-1-methylmelatonin analogues: effect of substituents on potency and binding affinity., Faust R., Bioorg Med Chem. July 1, 2007; 15 (13): 4543-51.


Regeneration of neural crest derivatives in the Xenopus tadpole tail., Lin G., BMC Dev Biol. May 24, 2007; 7 56.                    


Wnt11-R signaling regulates a calcium sensitive EMT event essential for dorsal fin development of Xenopus., Garriock RJ., Dev Biol. April 1, 2007; 304 (1): 127-40.            


Design, synthesis and melatoninergic potency of new N-acyl 8,9-dihydro-4-methoxy-7H-2-benzo[de]quinolinalkanamines., Tsotinis A., Bioorg Chem. April 1, 2007; 35 (2): 189-204.


Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis., Jenks BG., Neuroendocrinology. January 1, 2007; 85 (3): 177-85.


Expression and physiological regulation of BDNF receptors in the neuroendocrine melanotrope cell of Xenopus laevis., Kidane AH., Gen Comp Endocrinol. January 1, 2007; 153 (1-3): 176-81.      


The mother superior mutation ablates foxd3 activity in neural crest progenitor cells and depletes neural crest derivatives in zebrafish., Montero-Balaguer M., Dev Dyn. December 1, 2006; 235 (12): 3199-212.      


Localisation and physiological regulation of corticotrophin-releasing factor receptor 1 mRNA in the Xenopus laevis brain and pituitary gland., Calle M., J Neuroendocrinol. October 1, 2006; 18 (10): 797-805.


Effects of acrylamide, latrunculin, and nocodazole on intracellular transport and cytoskeletal organization in melanophores., Aspengren S., Cell Motil Cytoskeleton. July 1, 2006; 63 (7): 423-36.


Stable knock-down of vomeronasal receptor genes in transgenic Xenopus tadpoles., Kashiwagi A., Biochem Biophys Res Commun. June 23, 2006; 345 (1): 140-7.          


Functional analysis of recombinant mutants of maxadilan with a PAC1 receptor-expressing melanophore cell line., Reddy VB., J Biol Chem. June 16, 2006; 281 (24): 16197-201.


Characterization of atrazine-induced gonadal malformations in African clawed frogs (Xenopus laevis) and comparisons with effects of an androgen antagonist (cyproterone acetate) and exogenous estrogen (17beta-estradiol): Support for the demasculinization/feminization hypothesis., Hayes TB., Environ Health Perspect. April 1, 2006; 114 Suppl 1 (Suppl 1): 134-41.                          


Studies of pigment transfer between Xenopus laevis melanophores and fibroblasts in vitro and in vivo., Aspengren S., Pigment Cell Res. April 1, 2006; 19 (2): 136-45.


Receptors for neuropeptide Y, gamma-aminobutyric acid and dopamine differentially regulate Ca2+ currents in Xenopus melanotrope cells via the G(i) protein beta/gamma-subunit., Zhang H., Gen Comp Endocrinol. January 15, 2006; 145 (2): 140-7.


Identification of novel hexapeptide agonists at the Xenopus laevis melanophore melanocortin receptor., Iuga AO., Peptides. November 1, 2005; 26 (11): 2124-8.


Regulation of melanoblast and retinal pigment epithelium development by Xenopus laevis Mitf., Kumasaka M., Dev Dyn. November 1, 2005; 234 (3): 523-34.      


Comparative genomics on SNAI1, SNAI2, and SNAI3 orthologs., Katoh M., Oncol Rep. October 1, 2005; 14 (4): 1083-6.


High-pressure freezing followed by cryosubstitution as a tool for preserving high-quality ultrastructure and immunoreactivity in the Xenopus laevis pituitary gland., Wang L., Brain Res Brain Res Protoc. September 1, 2005; 15 (3): 155-63.


Xenopus as a model organism in developmental chemical genetic screens., Tomlinson ML., Mol Biosyst. September 1, 2005; 1 (3): 223-8.


Frog melanophores cultured on fluorescent microbeads: biomimic-based biosensing., Andersson TP., Biosens Bioelectron. July 15, 2005; 21 (1): 111-20.


Functional screening in the melanophore bioassay., Jayawickreme C., Curr Protoc Pharmacol. July 1, 2005; Chapter 12 Unit12.9.


Evidence that urocortin I acts as a neurohormone to stimulate alpha MSH release in the toad Xenopus laevis., Calle M., Dev Biol. April 8, 2005; 1040 (1-2): 14-28.              


Calcium influx through voltage-operated calcium channels is required for proopiomelanocortin protein expression in Xenopus melanotropes., van den Hurk MJ., Ann N Y Acad Sci. April 1, 2005; 1040 494-7.


Xenopus Id3 is required downstream of Myc for the formation of multipotent neural crest progenitor cells., Light W., Development. April 1, 2005; 132 (8): 1831-41.              


The extracellular calcium-sensing receptor increases the number of calcium steps and action currents in pituitary melanotrope cells., van den Hurk MJ., Neurosci Lett. March 29, 2005; 377 (2): 125-9.


Regulation of bidirectional melanosome transport by organelle bound MAP kinase., Deacon SW., Curr Biol. March 8, 2005; 15 (5): 459-63.


Msx1 and Pax3 cooperate to mediate FGF8 and WNT signals during Xenopus neural crest induction., Monsoro-Burq AH., Dev Cell. February 1, 2005; 8 (2): 167-78.            


Molecular cloning and characterization of a new RGS protein of Medaka., Itoh M., Gene. January 31, 2005; 345 (2): 165-71.


Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin., Isoldi MC., Proc Natl Acad Sci U S A. January 25, 2005; 102 (4): 1217-21.


Low temperature stimulates alpha-melanophore-stimulating hormone secretion and inhibits background adaptation in Xenopus laevis., Tonosaki Y., J Neuroendocrinol. November 1, 2004; 16 (11): 894-905.


Protein kinase A, which regulates intracellular transport, forms complexes with molecular motors on organelles., Kashina AS., Curr Biol. October 26, 2004; 14 (20): 1877-81.        


Melatonin, melatonin receptors and melanophores: a moving story., Sugden D., Pigment Cell Res. October 1, 2004; 17 (5): 454-60.


Unusual leucophore-like cells specifically appear in the lineage of melanophores in the periodic albino mutant of Xenopus laevis., Fukuzawa T., Pigment Cell Res. June 1, 2004; 17 (3): 252-61.


Isolation and developmental expression of Mitf in Xenopus laevis., Kumasaka M., Dev Dyn. May 1, 2004; 230 (1): 107-13.    


Expression of vomeronasal receptor genes in Xenopus laevis., Hagino-Yamagishi K., J Comp Neurol. April 26, 2004; 472 (2): 246-56.                      


Mutational analysis of evolutionarily conserved ACTH residues., Costa JL., Gen Comp Endocrinol. March 1, 2004; 136 (1): 12-6.


Binding affinity and biological activity of oxygen and sulfur isosteres at melatonin receptors as a function of their hydrogen bonding capability., Davies DJ., Bioorg Chem. February 1, 2004; 32 (1): 1-12.


Differential distribution and regulation of expression of synaptosomal-associated protein of 25 kDa isoforms in the Xenopus pituitary gland and brain., Kolk SM., Neuroscience. January 1, 2004; 128 (3): 531-43.


Activity-dependent dynamics of coexisting brain-derived neurotrophic factor, pro-opiomelanocortin and alpha-melanophore-stimulating hormone in melanotrope cells of Xenopus laevis., Wang LC., J Neuroendocrinol. January 1, 2004; 16 (1): 19-25.


Phosphoinositide 3-kinase is involved in Xenopus and Labrus melanophore aggregation., Andersson TP., Cell Signal. December 1, 2003; 15 (12): 1119-27.


The RNA-binding protein Vg1 RBP is required for cell migration during early neural development., Yaniv K., Development. December 1, 2003; 130 (23): 5649-61.              


Some sweet and bitter tastants stimulate inhibitory pathway of adenylyl cyclase via melatonin and alpha 2-adrenergic receptors in Xenopus laevis melanophores., Zubare-Samuelov M., Am J Physiol Cell Physiol. November 1, 2003; 285 (5): C1255-62.


Microplate based biosensing with a computer screen aided technique., Filippini D., Biosens Bioelectron. October 30, 2003; 19 (1): 35-41.


Synthesis and study of pigment aggregation response of some melatonin derivatives., Doss SH., Pharmazie. September 1, 2003; 58 (9): 607-13.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???