Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1229) Expression Attributions Wiki
XB-ANAT-736

Papers associated with neural tube (and ptch1)

Limit to papers also referencing gene:
Show all neural tube papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Members of the Rusc protein family interact with Sufu and inhibit vertebrate Hedgehog signaling., Jin Z., Development. November 1, 2016; 143 (21): 3944-3955.                        


ATP4 and ciliation in the neuroectoderm and endoderm of Xenopus embryos and tadpoles., Walentek P., Data Brief. April 20, 2015; 4 22-31.            


Early development of the neural plate: new roles for apoptosis and for one of its main effectors caspase-3., Juraver-Geslin HA., Genesis. February 1, 2015; 53 (2): 203-24.          


Chibby functions in Xenopus ciliary assembly, embryonic development, and the regulation of gene expression., Shi J., Dev Biol. November 15, 2014; 395 (2): 287-98.                    


Stabilization of speckle-type POZ protein (Spop) by Daz interacting protein 1 (Dzip1) is essential for Gli turnover and the proper output of Hedgehog signaling., Schwend T., J Biol Chem. November 8, 2013; 288 (45): 32809-32820.                


Uncoupling VEGFA functions in arteriogenesis and hematopoietic stem cell specification., Leung A., Dev Cell. January 28, 2013; 24 (2): 144-58.                                


Hes4 controls proliferative properties of neural stem cells during retinal ontogenesis., El Yakoubi W., Stem Cells. December 1, 2012; 30 (12): 2784-95.              


The dual regulator Sufu integrates Hedgehog and Wnt signals in the early Xenopus embryo., Min TH., Dev Biol. October 1, 2011; 358 (1): 262-76.                            


Hedgehog signaling regulates size of the dorsal aortae and density of the plexus during avian vascular development., Moran CM., Dev Dyn. June 1, 2011; 240 (6): 1354-64.            


MIM regulates vertebrate neural tube closure., Liu W., Development. May 1, 2011; 138 (10): 2035-47.                            


Sonic hedgehog signaling is decoded by calcium spike activity in the developing spinal cord., Belgacem YH., Proc Natl Acad Sci U S A. March 15, 2011; 108 (11): 4482-7.        


Negative regulation of Hedgehog signaling by the cholesterogenic enzyme 7-dehydrocholesterol reductase., Koide T., Development. June 1, 2006; 133 (12): 2395-405.                


Olfactory and lens placode formation is controlled by the hedgehog-interacting protein (Xhip) in Xenopus., Cornesse Y., Dev Biol. January 15, 2005; 277 (2): 296-315.                          


Axes establishment during eye morphogenesis in Xenopus by coordinate and antagonistic actions of BMP4, Shh, and RA., Sasagawa S., Genesis. June 1, 2002; 33 (2): 86-96.                      


Notochord patterning of the endoderm., Cleaver O., Dev Biol. June 1, 2001; 234 (1): 1-12.      


Molecular cloning and expression analysis of the Hedgehog receptors XPtc1 and XSmo in Xenopus laevis., Koebernick K., Mech Dev. February 1, 2001; 100 (2): 303-8.  


Biochemical evidence that patched is the Hedgehog receptor., Marigo V., Nature. November 14, 1996; 384 (6605): 176-9.

???pagination.result.page??? 1