Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (412) Expression Attributions Wiki
XB-ANAT-446

Papers associated with cranial neural crest (and uqcc6)

Limit to papers also referencing gene:
Show all cranial neural crest papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

NEIL1 and NEIL2 DNA glycosylases protect neural crest development against mitochondrial oxidative stress., Han D., Elife. September 30, 2019; 8                                     


A new transgenic reporter line reveals Wnt-dependent Snai2 re-expression and cranial neural crest differentiation in Xenopus., Li J., Sci Rep. August 1, 2019; 9 (1): 11191.              


Vestigial-like 3 is a novel Ets1 interacting partner and regulates trigeminal nerve formation and cranial neural crest migration., Simon E., Biol Open. October 15, 2017; 6 (10): 1528-1540.                                  


Musculocontractural Ehlers-Danlos syndrome and neurocristopathies: dermatan sulfate is required for Xenopus neural crest cells to migrate and adhere to fibronectin., Gouignard N., Dis Model Mech. June 1, 2016; 9 (6): 607-20.                                      


E-cadherin is required for cranial neural crest migration in Xenopus laevis., Huang C., Dev Biol. March 15, 2016; 411 (2): 159-171.                        


Evolutionary innovation and conservation in the embryonic derivation of the vertebrate skull., Piekarski N., Nat Commun. December 1, 2014; 5 5661.                


Novel animal pole-enriched maternal mRNAs are preferentially expressed in neural ectoderm., Grant PA., Dev Dyn. March 1, 2014; 243 (3): 478-96.                                        


Signaling and transcriptional regulation in neural crest specification and migration: lessons from xenopus embryos., Pegoraro C., Wiley Interdiscip Rev Dev Biol. January 1, 2013; 2 (2): 247-59.      


Comparative expression analysis of the H3K27 demethylases, JMJD3 and UTX, with the H3K27 methylase, EZH2, in Xenopus., Kawaguchi A., Int J Dev Biol. January 1, 2012; 56 (4): 295-300.                                          


Williams Syndrome Transcription Factor is critical for neural crest cell function in Xenopus laevis., Barnett C., Mech Dev. January 1, 2012; 129 (9-12): 324-38.              


Expression analysis of the peroxiredoxin gene family during early development in Xenopus laevis., Shafer ME., Gene Expr Patterns. December 1, 2011; 11 (8): 511-6.      


Xenopus reduced folate carrier regulates neural crest development epigenetically., Li J., PLoS One. January 1, 2011; 6 (11): e27198.                            


Distinct roles for Robo2 in the regulation of axon and dendrite growth by retinal ganglion cells., Hocking JC., Mech Dev. January 1, 2010; 127 (1-2): 36-48.        


Myosin-X is required for cranial neural crest cell migration in Xenopus laevis., Hwang YS., Dev Dyn. October 1, 2009; 238 (10): 2522-9.      


Embryogenesis and laboratory maintenance of the foam-nesting túngara frogs, genus Engystomops (= Physalaemus)., Romero-Carvajal A., Dev Dyn. June 1, 2009; 238 (6): 1444-54.      


FoxN3 is required for craniofacial and eye development of Xenopus laevis., Schuff M., Dev Dyn. January 1, 2007; 236 (1): 226-39.                            


Specification of the otic placode depends on Sox9 function in Xenopus., Saint-Germain N., Development. April 1, 2004; 131 (8): 1755-63.              


Xenopus Dan, a member of the Dan gene family of BMP antagonists, is expressed in derivatives of the cranial and trunk neural crest., Eimon PM., Mech Dev. September 1, 2001; 107 (1-2): 187-9.    


Multiple variants of receptor-type protein tyrosine phosphatase beta are expressed in the central nervous system of Xenopus., Nagata S., Gene. January 10, 2001; 262 (1-2): 81-8.          

???pagination.result.page??? 1