Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (762) Expression Attributions Wiki
XB-ANAT-18

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 4 5 6 7 8 9 10 11 12 13 14 15 16 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Spacer alterations which increase the expression of porcine growth hormone in E. coli., Vize PD., FEBS Lett. March 9, 1987; 213 (1): 155-8.


Immunocytochemical localization and spatial relation to the adenohypophysis of a somatostatin-like and a corticotropin-releasing factor-like peptide in the brain of four amphibian species., Olivereau M., Cell Tissue Res. February 1, 1987; 247 (2): 317-24.


Isolation of immunoreactive beta-endorphin-related and Met-enkephalin-related peptides from the posterior pituitary of the amphibian, Xenopus laevis., Dores RM., Peptides. January 1, 1987; 8 (6): 1119-25.


Regulation of MSH release from the neurointermediate lobe of Xenopus laevis by CRF-like peptides., Verburg-Van Kemenade BM., Peptides. January 1, 1987; 8 (6): 1093-100.


Assessment of TRH as a potential MSH release stimulating factor in Xenopus laevis., Verburg-van Kemenade BM., Peptides. January 1, 1987; 8 (1): 69-76.


An NPY-like peptide may function as MSH-release inhibiting factor in Xenopus laevis., Verburg-van Kemenade BM., Peptides. January 1, 1987; 8 (1): 61-7.


[Melanotropic activity in the hypophysis and blood of rats in the early postnatal period]., Panova IG., Dokl Akad Nauk SSSR. January 1, 1987; 295 (5): 1258-60.


GABA and dopamine act directly on melanotropes of Xenopus to inhibit MSH secretion., Verburg-Van Kemenade BM., Brain Res Bull. November 1, 1986; 17 (5): 697-704.


Regulation of melanotropin release from the pars intermedia of the amphibian Xenopus laevis: evaluation of the involvement of serotonergic, cholinergic, or adrenergic receptor mechanisms., Verburg-van Kemenade BM., Gen Comp Endocrinol. September 1, 1986; 63 (3): 471-80.


The pituitary adrenocorticotropes originate from neural ridge tissue in Xenopus laevis., Eagleson GW., J Embryol Exp Morphol. June 1, 1986; 95 1-14.              


Expression of two proopiomelanocortin genes in the pituitary gland of Xenopus laevis: complete structures of the two preprohormones., Martens GJ., Nucleic Acids Res. May 12, 1986; 14 (9): 3791-8.


The ontogeny of androgen receptors in the CNS of Xenopus laevis frogs., Gorlick DL., Dev Biol. May 1, 1986; 391 (2): 193-200.


Stable accumulation of a rat truncated repeat transcript in Xenopus oocytes., Gutierrez-Hartmann A., Proc Natl Acad Sci U S A. May 1, 1986; 83 (10): 3106-10.


Identification of His5,Trp7,Tyr8-GnRH (chicken GnRH II) in amphibian brain., King JA., Peptides. January 1, 1986; 7 (5): 827-34.


Estrogen-induced progestin receptors in the brain and pituitary of the South African clawed frog, Xenopus laevis., Roy EJ., Neuroendocrinology. January 1, 1986; 42 (1): 51-6.


Characteristics of receptors for dopamine in the pars intermedia of the amphibian Xenopus laevis., Verburg-Van Kemenade BM., Neuroendocrinology. January 1, 1986; 44 (4): 446-56.


GABAergic regulation of melanocyte-stimulating hormone secretion from the pars intermedia of Xenopus laevis: immunocytochemical and physiological evidence., Verburg-van Kemenade BM., Endocrinology. January 1, 1986; 118 (1): 260-7.


Pituitary extract of the ricefield eel Monopterus albus (Synbranchidae, Teleostei) exhibits gonadotropic activity in the classes Mammalia, Aves, Reptilia and Amphibia., Ng TB., Comp Biochem Physiol A Comp Physiol. January 1, 1986; 84 (2): 371-81.


Nucleotide sequence of cloned cDNA for pro-opiomelanocortin in the amphibian Xenopus laevis., Martens GJ., J Biol Chem. November 5, 1985; 260 (25): 13685-9.


Identification by immunofluorescence of ACTH-producing cells in the pituitary gland of the tree frog Hyla arborea., Campantico E., Gen Comp Endocrinol. August 1, 1985; 59 (2): 192-8.


Regulation of pro-opiomelanocortin synthesis by dopamine and cAMP in the amphibian pituitary intermediate lobe., Loh YP., J Biol Chem. July 25, 1985; 260 (15): 8956-63.


Comparative studies on the electric nature of amphibian gonadotropin., Tanaka S., Gen Comp Endocrinol. July 1, 1985; 59 (1): 110-9.


Fish melanin-concentrating hormone disperses melanin in amphibian melanophores., Ide H., Gen Comp Endocrinol. June 1, 1985; 58 (3): 486-90.


Association of newly synthesized pro-opiomelanocortin with secretory granule membranes in pituitary pars intermedia cells., Loh YP., FEBS Lett. May 6, 1985; 184 (1): 40-3.


Active calcium responses recorded optically from nerve terminals of the frog neurohypophysis., Obaid AL., J Gen Physiol. April 1, 1985; 85 (4): 481-9.


Effects of hypophysectomy and substitution with growth hormone, prolactin, and thyroxine on growth and deposition in juvenile frogs, Xenopus laevis., Nybroe O., Gen Comp Endocrinol. February 1, 1985; 57 (2): 257-65.


Specific binding sites for ovine prolactin in three amphibian cell lines., Dunand M., Am J Physiol. January 1, 1985; 248 (1 Pt 1): C80-7.


Phylogenetic cross-reactivities of monoclonal antibodies produced against rat neurophysin., Ben-Barak Y., Cell Mol Neurobiol. December 1, 1984; 4 (4): 339-49.


Elicitation of weak immune response in larval and adult Xenopus laevis by allografted pituitary., Maéno M., Transplantation. September 1, 1984; 38 (3): 251-5.


Evidence for the participation of a melanin-concentrating hormone in physiological colour change in the eel., Gilham ID., J Endocrinol. August 1, 1984; 102 (2): 237-43.


Effects of synthetic mammalian thyrotrophin releasing hormone, somatostatin and dopamine on the secretion of prolactin and growth hormone from amphibian and reptilian pituitary glands incubated in vitro., Hall TR., J Endocrinol. August 1, 1984; 102 (2): 175-80.


The development of the pars intermedia and its role in the regulation of dermal melanophores in the larvae of the amphibian Xenopus laevis., Verburg-van Kemenade BM., Gen Comp Endocrinol. July 1, 1984; 55 (1): 54-65.


Intracellular acetylation of desacetyl alpha MSH in the Xenopus laevis neurointermediate lobe., Goldman ME., Peptides. January 1, 1984; 5 (6): 1129-34.


Optical recording of action potentials from vertebrate nerve terminals using potentiometric probes provides evidence for sodium and calcium components., Salzberg BM., Nature. November 3, 1983; 306 (5938): 36-40.


Steroid production by Xenopus ovarian follicles at different developmental stages., Fortune JE., Dev Biol. October 1, 1983; 99 (2): 502-9.


The dynamics of the steroidogenic response of perfused Xenopus testis explants to gonadotropins., Boujard D., Gen Comp Endocrinol. September 1, 1983; 51 (3): 406-13.


Vasopressin and oxytocin precursors as model preprohormones., Ivell R., Neuroendocrinology. September 1, 1983; 37 (3): 235-40.


Further observations on the distribution and properties of teleost melanin concentrating hormone., Baker BI., Gen Comp Endocrinol. June 1, 1983; 50 (3): 423-31.


Characterization of proopiocortin converting activity in rat anterior pituitary secretory granules., Chang TL., Endocrinology. May 1, 1983; 112 (5): 1832-8.


In vivo biosynthesis of melanotropins and related peptides in the pars intermedia of Xenopus laevis., Martens GJ., Gen Comp Endocrinol. January 1, 1983; 49 (1): 73-80.


Processing of normal and non-glycosylated forms of toad pro-opiocortin by rat intermediate (pituitary) lobe pro-opiocortin converting enzyme activity., Loh YP., Life Sci. December 27, 1982; 31 (26): 3043-50.


Proopiocortin-converting enzyme activity in bovine neurosecretory granules., Chang TL., Endocrinology. November 1, 1982; 111 (5): 1607-14.


Self-pituitary grafts are not rejected by frogs deprived of their pituitary anlagen as embryos., Rollins-Smith LA., Nature. October 28, 1982; 299 (5886): 820-1.


Biosynthesis of a gamma 3-melanotropin-like peptide in the pars intermedia of the amphibian pituitary gland., Martens GJ., Eur J Biochem. August 1, 1982; 126 (1): 23-8.


Biosynthesis of two structurally different pro-opiomelanocortins in the pars intermedia of the amphibian pituitary gland., Martens GJ., Eur J Biochem. August 1, 1982; 126 (1): 17-22.


Biosynthesis of pairs of peptides related to melanotropin, corticotropin and endorphin in the pars intermedia of the amphibian pituitary gland., Martens GJ., Eur J Biochem. February 1, 1982; 122 (1): 1-10.


Immunohistochemical demonstration of TSH-, LH- and ACTH-cells in the hypophysis of tadpoles of Xenopus laevis D., Moriceau-Hay D., Cell Tissue Res. January 1, 1982; 225 (1): 57-64.


Cerebrospinal fluid-contacting neurons and other somatostatin-immunoreactive perikarya in brains of tadpoles of Xenopus laevis., Blähser S., Cell Tissue Res. January 1, 1982; 224 (3): 693-7.


The Presence of Intramitochondrial Yolk-crystals in Oocytes of Hypophysectomized Bullfrog Tadpoles*: (intramitochondrial yolk-crystal/tadpole oocyte (Rana)/hypophysectomized tadpole)., Hsü CY., Dev Growth Differ. January 1, 1982; 24 (4): 319-325.


N alpha-acetylation is linked to alpha-MSH release from pars intermedia of the amphibian pituitary gland., Martens GJ., Nature. December 10, 1981; 294 (5841): 558-60.

???pagination.result.page??? ???pagination.result.prev??? 4 5 6 7 8 9 10 11 12 13 14 15 16 ???pagination.result.next???