Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (4079) Expression Attributions Wiki
XB-ANAT-86

Papers associated with tail region (and acta1)

Limit to papers also referencing gene:
Show all tail region papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Using an aquatic model, Xenopus laevis, to uncover the role of chromodomain 1 in craniofacial disorders., Wyatt BH., Genesis. February 1, 2021; 59 (1-2): e23394.                        


Predation threats for a 24-h period activated the extension of axons in the brains of Xenopus tadpoles., Mori T., Sci Rep. July 16, 2020; 10 (1): 11737.                    


PFKFB4 control of AKT signaling is essential for premigratory and migratory neural crest formation., Figueiredo AL., Development. November 15, 2017; 144 (22): 4183-4194.                                


Lamellipodin promotes actin assembly by clustering Ena/VASP proteins and tethering them to actin filaments., Hansen SD., Elife. January 6, 2015; 4                         


An adhesome comprising laminin, dystroglycan and myosin IIA is required during notochord development in Xenopus laevis., Buisson N., Development. December 1, 2014; 141 (23): 4569-79.                      


Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification., Yasuoka Y., Nat Commun. July 9, 2014; 5 4322.        


Cadherin-dependent differential cell adhesion in Xenopus causes cell sorting in vitro but not in the embryo., Ninomiya H., J Cell Sci. April 15, 2012; 125 (Pt 8): 1877-83.              


EBF proteins participate in transcriptional regulation of Xenopus muscle development., Green YS., Dev Biol. October 1, 2011; 358 (1): 240-50.                    


Distinct roles for telethonin N-versus C-terminus in sarcomere assembly and maintenance., Sadikot T., Dev Dyn. April 1, 2010; 239 (4): 1124-35.                  


Bio-mimetic surface engineering of plasmid-loaded nanoparticles for active intracellular trafficking by actin comet-tail motility., Ng CP., Biomaterials. February 1, 2009; 30 (5): 951-8.


Changing a limb muscle growth program into a resorption program., Cai L., Dev Biol. April 1, 2007; 304 (1): 260-71.                      


p38 MAP kinase regulates the expression of XMyf5 and affects distinct myogenic programs during Xenopus development., Keren A., Dev Biol. December 1, 2005; 288 (1): 73-86.              


Bacterial shape and ActA distribution affect initiation of Listeria monocytogenes actin-based motility., Rafelski SM., Biophys J. September 1, 2005; 89 (3): 2146-58.


High affinity, paralog-specific recognition of the Mena EVH1 domain by a miniature protein., Golemi-Kotra D., J Am Chem Soc. January 14, 2004; 126 (1): 4-5.


Identification of two regions in the N-terminal domain of ActA involved in the actin comet tail formation by Listeria monocytogenes., Lasa I., EMBO J. April 1, 1997; 16 (7): 1531-40.


Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes., Welch MD., Nature. January 16, 1997; 385 (6613): 265-9.


Developmental expression and differential regulation by retinoic acid of Xenopus COUP-TF-A and COUP-TF-B., van der Wees J., Mech Dev. February 1, 1996; 54 (2): 173-84.          


Involvement of profilin in the actin-based motility of L. monocytogenes in cells and in cell-free extracts., Theriot JA., Cell. February 11, 1994; 76 (3): 505-17.


Xenopus Distal-less related homeobox genes are expressed in the developing forebrain and are induced by planar signals., Papalopulu N., Development. March 1, 1993; 117 (3): 961-75.          


Differential expression of the Ca2+-binding protein parvalbumin during myogenesis in Xenopus laevis., Schwartz LM., Dev Biol. August 1, 1988; 128 (2): 441-52.              

???pagination.result.page??? 1