Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3411) Expression Attributions Wiki
XB-ANAT-297

Papers associated with ventral

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Sfrp5 coordinates foregut specification and morphogenesis by antagonizing both canonical and noncanonical Wnt11 signaling., Li Y., Genes Dev. November 1, 2008; 22 (21): 3050-63.                        


A role for Xvax2 in controlling proliferation of Xenopus ventral eye and brain progenitors., Liu M., Dev Dyn. November 1, 2008; 237 (11): 3387-93.      


Wnt5a and Wnt11 interact in a maternal Dkk1-regulated fashion to activate both canonical and non-canonical signaling in Xenopus axis formation., Cha SW., Development. November 1, 2008; 135 (22): 3719-29.        


Xenopus BTBD6 and its Drosophila homologue lute are required for neuronal development., Bury FJ., Dev Dyn. November 1, 2008; 237 (11): 3352-60.              


The Wnt signaling regulator R-spondin 3 promotes angioblast and vascular development., Kazanskaya O., Development. November 1, 2008; 135 (22): 3655-64.                


Spatio-temporal expression of Pax6 in Xenopus forebrain., Moreno N., Brain Res. November 6, 2008; 1239 92-9.      


Illumination controls differentiation of dopamine neurons regulating behaviour., Dulcis D., Nature. November 13, 2008; 456 (7219): 195-201.


Raldh expression in embryos of the direct developing frog Eleutherodactylus coqui and the conserved retinoic acid requirement for forelimb initiation., Elinson RP., J Exp Zool B Mol Dev Evol. November 15, 2008; 310 (7): 588-95.


Neogenin and RGMa control neural tube closure and neuroepithelial morphology by regulating cell polarity., Kee N., J Neurosci. November 26, 2008; 28 (48): 12643-53.                


PMesogenin1 and 2 function directly downstream of Xtbx6 in Xenopus somitogenesis and myogenesis., Tazumi S., Dev Dyn. December 1, 2008; 237 (12): 3749-61.        


Heme metabolism enzymes are dynamically expressed during Xenopus embryonic development., Shi J., Biocell. December 1, 2008; 32 (3): 259-63.  


Fibroblast growth factor receptor-induced phosphorylation of ephrinB1 modulates its interaction with Dishevelled., Lee HS., Mol Biol Cell. January 1, 2009; 20 (1): 124-33.                    


Xenopus ADAM19 is involved in neural, neural crest and muscle development., Neuner R., Mech Dev. January 1, 2009; 126 (3-4): 240-55.                      


Cloning and expression analysis of the anterior parahox genes, Gsh1 and Gsh2 from Xenopus tropicalis., Illes JC., Dev Dyn. January 1, 2009; 238 (1): 194-203.                                


Samba, a Xenopus hnRNP expressed in neural and neural crest tissues., Yan CY., Dev Dyn. January 1, 2009; 238 (1): 204-9.      


xArx2: an aristaless homolog that regulates brain regionalization during development in Xenopus laevis., Wolanski M., Genesis. January 1, 2009; 47 (1): 19-31.              


Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives., Rogers CD., Mech Dev. January 1, 2009; 126 (1-2): 42-55.        


Relocations of cell convergence sites and formation of pharyngula-like shapes in mechanically relaxed Xenopus embryos., Kornikova ES., Dev Genes Evol. January 1, 2009; 219 (1): 1-10.


Requirement of Wnt/beta-catenin signaling in pronephric kidney development., Lyons JP., Mech Dev. January 1, 2009; 126 (3-4): 142-59.        


Expression of Xenopus tropicalis HNF6/Onecut-1., Haworth KE., Int J Dev Biol. January 1, 2009; 53 (1): 159-62.          


Lef1 plays a role in patterning the mesoderm and ectoderm in Xenopus tropicalis., Roel G., Int J Dev Biol. January 1, 2009; 53 (1): 81-9.          


Cranial osteogenesis and suture morphology in Xenopus laevis: a unique model system for studying craniofacial development., Slater BJ., PLoS One. January 1, 2009; 4 (1): e3914.                  


Modulation of the beta-catenin signaling pathway by the dishevelled-associated protein Hipk1., Louie SH., PLoS One. January 1, 2009; 4 (2): e4310.                    


Evolution of non-coding regulatory sequences involved in the developmental process: reflection of differential employment of paralogous genes as highlighted by Sox2 and group B1 Sox genes., Kamachi Y., Proc Jpn Acad Ser B Phys Biol Sci. January 1, 2009; 85 (2): 55-68.                  


FSHD region gene 1 (FRG1) is crucial for angiogenesis linking FRG1 to facioscapulohumeral muscular dystrophy-associated vasculopathy., Wuebbles RD., Dis Model Mech. January 1, 2009; 2 (5-6): 267-74.                  


[Mechanodependent cell movements in the axial rudiments of Xenopus gastrulae], Troshina TG., Ontogenez. January 1, 2009; 40 (2): 148-53.


Developmental expression and regulation of the chemokine CXCL14 in Xenopus., Park BY., Int J Dev Biol. January 1, 2009; 53 (4): 535-40.                    


A novel method for microinjection into Xenopus eggs and embryos supported in methylcellulose solution., Tanigawa Y., Int J Dev Biol. January 1, 2009; 53 (7): 1053-6.


Generating asymmetries in the early vertebrate embryo: the role of the Cerberus-like family., Belo JA., Int J Dev Biol. January 1, 2009; 53 (8-10): 1399-407.


FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination., Dupont S., Cell. January 9, 2009; 136 (1): 123-35.  


Trim36/Haprin plays a critical role in the arrangement of somites during Xenopus embryogenesis., Yoshigai E., Biochem Biophys Res Commun. January 16, 2009; 378 (3): 428-32.          


A novel nicotinic acetylcholine receptor subtype in basal forebrain cholinergic neurons with high sensitivity to amyloid peptides., Liu Q., J Neurosci. January 28, 2009; 29 (4): 918-29.


Thyroid hormone receptor subtype specificity for hormone-dependent neurogenesis in Xenopus laevis., Denver RJ., Dev Biol. February 1, 2009; 326 (1): 155-68.                


Retinol dehydrogenase 10 is a feedback regulator of retinoic acid signalling during axis formation and patterning of the central nervous system., Strate I., Development. February 1, 2009; 136 (3): 461-72.                


Comparative expression analysis of the neurogenins in Xenopus tropicalis and Xenopus laevis., Nieber F., Dev Dyn. February 1, 2009; 238 (2): 451-8.        


A role for Syndecan-4 in neural induction involving ERK- and PKC-dependent pathways., Kuriyama S., Development. February 1, 2009; 136 (4): 575-84.                    


Identification of novel transcripts with differential dorso-ventral expression in Xenopus gastrula using serial analysis of gene expression., Faunes F., Genome Biol. February 11, 2009; 10 (2): R15.                    


Complementary expression of HSPG 6-O-endosulfatases and 6-O-sulfotransferase in the hindbrain of Xenopus laevis., Winterbottom EF., Gene Expr Patterns. March 1, 2009; 9 (3): 166-72.              


'Big frog, small frog'--maintaining proportions in embryonic development: delivered on 2 July 2008 at the 33rd FEBS Congress in Athens, Greece., Barkai N., FEBS J. March 1, 2009; 276 (5): 1196-207.


The non-methylated DNA-binding function of Kaiso is not required in early Xenopus laevis development., Ruzov A., Development. March 1, 2009; 136 (5): 729-38.            


Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nkx2-5., Espinoza-Lewis RA., Dev Biol. March 15, 2009; 327 (2): 376-85.      


Cell communication with the neural plate is required for induction of neural markers by BMP inhibition: evidence for homeogenetic induction and implications for Xenopus animal cap and chick explant assays., Linker C., Dev Biol. March 15, 2009; 327 (2): 478-86.      


The role of Xenopus Rx-L in photoreceptor cell determination., Wu HY., Dev Biol. March 15, 2009; 327 (2): 352-65.            


Mediolateral and rostrocaudal topographic organization of the sympathetic preganglionic cell pool in the spinal cord of Xenopus laevis., Nakano M., J Comp Neurol. March 20, 2009; 513 (3): 292-314.                      


Distribution pattern of neuropeptide Y in the brain, pituitary and olfactory system during the larval development of the toad Rhinella arenarum (Amphibia: Anura)., Heer T., Anat Histol Embryol. April 1, 2009; 38 (2): 89-95.


The Wnt antagonists Frzb-1 and Crescent locally regulate basement membrane dissolution in the developing primary mouth., Dickinson AJ., Development. April 1, 2009; 136 (7): 1071-81.                                      


Xenopus Wntless and the retromer complex cooperate to regulate XWnt4 secretion., Kim H., Mol Cell Biol. April 1, 2009; 29 (8): 2118-28.  


N- and E-cadherins in Xenopus are specifically required in the neural and non-neural ectoderm, respectively, for F-actin assembly and morphogenetic movements., Nandadasa S., Development. April 1, 2009; 136 (8): 1327-38.                      


Overlapping functions of Cdx1, Cdx2, and Cdx4 in the development of the amphibian Xenopus tropicalis., Faas L., Dev Dyn. April 1, 2009; 238 (4): 835-52.                                


The miR-430/427/302 family controls mesendodermal fate specification via species-specific target selection., Rosa A., Dev Cell. April 1, 2009; 16 (4): 517-27.    

???pagination.result.page??? ???pagination.result.prev??? 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 ???pagination.result.next???