Results 1 - 50 of 6158 results
Kif9 is an active kinesin motor required for ciliary beating and proximodistal patterning of motile axonemes. , Konjikusic MJ., J Cell Sci. March 1, 2023; 136 (5):
A mathematical modelling portrait of Wnt signalling in early vertebrate embryogenesis. , Giuraniuc CV., J Theor Biol. November 7, 2022; 551-552 111239.
Manipulating the microbiome alters regenerative outcomes in Xenopus laevis tadpoles via lipopolysaccharide signalling. , Chapman PA., Wound Repair Regen. November 1, 2022; 30 (6): 636-651.
Microsurgical Manipulations to Isolate Collectively Migrating Mesendoderm. , Davidson LA ., Cold Spring Harb Protoc. November 1, 2022; 2022 (11): Pdb.prot097378.
Microsurgical Methods to Make the Keller Sandwich Explant and the Dorsal Isolate. , Davidson LA ., Cold Spring Harb Protoc. November 1, 2022; 2022 (11): Pdb.prot097386.
Microsurgical Methods to Isolate and Culture the Early Gastrula Dorsal Marginal Zone. , Davidson LA ., Cold Spring Harb Protoc. November 1, 2022; 2022 (11): Pdb.prot097360.
HCN2 channel-induced rescue of brain, eye, heart and gut teratogenesis caused by nicotine, ethanol and aberrant notch signalling. , Pai VP ., Wound Repair Regen. November 1, 2022; 30 (6): 681-706.
Gene expression analysis of the Xenopus laevis early limb bud proximodistal axis. , Hudson DT., Dev Dyn. November 1, 2022; 251 (11): 1880-1896.
Nascent transcriptome reveals orchestration of zygotic genome activation in early embryogenesis. , Chen H., Curr Biol. October 10, 2022; 32 (19): 4314-4324.e7.
Eph/ephrin signaling controls cell contacts and formation of a structurally asymmetrical tissue boundary in the Xenopus gastrula. , Barua D., Dev Biol. October 1, 2022; 490 73-85.
The mycorrhiza-specific ammonium transporter ZmAMT3;1 mediates mycorrhiza-dependent nitrogen uptake in maize roots. , Hui J., Plant Cell. September 27, 2022; 34 (10): 4066-4087.
Maternal Wnt11b regulates cortical rotation during Xenopus axis formation: analysis of maternal-effect wnt11b mutants. , Houston DW ., Development. September 1, 2022; 149 (17):
Intravital staining to detect mineralization in Xenopus tropicalis during and after metamorphosis. , Nakajima K ., Dev Growth Differ. September 1, 2022; 64 (7): 368-378.
A myeloperoxidase enhancer drives myeloid cell-specific labeling in a transgenic frog line. , Yamada-Kondo S., Dev Growth Differ. September 1, 2022; 64 (7): 362-367.
GJA1 depletion causes ciliary defects by affecting Rab11 trafficking to the ciliary base. , Jang DG., Elife. August 25, 2022; 11
Positive feedback regulation of frizzled-7 expression robustly shapes a steep Wnt gradient in Xenopus heart development, together with sFRP1 and heparan sulfate. , Yamamoto T ., Elife. August 9, 2022; 11
Functions of block of proliferation 1 during anterior development in Xenopus laevis. , Gärtner C., PLoS One. August 2, 2022; 17 (8): e0273507.
Xenopus Dusp6 modulates FGF signaling to precisely pattern pre-placodal ectoderm. , Tsukano K., Dev Biol. August 1, 2022; 488 81-90.
Foxh1 engages in chromatin regulation revealed by protein interactome analyses. , Zhou JJ ., Dev Growth Differ. August 1, 2022; 64 (6): 297-305.
Cell cortex regulation by the planar cell polarity protein Prickle1. , Huang Y., J Cell Biol. July 4, 2022; 221 (7):
Evo-Devo of Urbilateria and its larval forms. , De Robertis EM ., Dev Biol. July 1, 2022; 487 10-20.
Comprehensive expression analysis for the core cell cycle regulators in the chicken embryo reveals novel tissue-specific synexpression groups and similarities and differences with expression in mouse, frog and zebrafish. , Alaiz Noya M., J Anat. July 1, 2022; 241 (1): 42-66.
Distinct spatiotemporal contribution of morphogenetic events and mechanical tissue coupling during Xenopus neural tube closure. , Christodoulou N., Development. July 1, 2022; 149 (13):
Alignment of the cell long axis by unidirectional tension acts cooperatively with Wnt signalling to establish planar cell polarity. , Hirano S., Development. June 15, 2022; 149 (12):
Rapalog-induced cell adhesion molecule inhibits mesoderm migration in Xenopus embryos by increasing frequency of adhesion to the ectoderm. , Usami C., Genes Cells. June 1, 2022; 27 (6): 436-450.
FGF/MAPK/Ets signaling in Xenopus ectoderm contributes to neural induction and patterning in an autonomous and paracrine manner, respectively. , Hongo I., Cells Dev. June 1, 2022; 170 203769.
Inducible and tissue-specific cell labeling in Cre-ERT2 transgenic Xenopus lines. , Lin TY., Dev Growth Differ. June 1, 2022; 64 (5): 243-253.
ccr7 affects both morphogenesis and differentiation during early Xenopus embryogenesis. , Goto T ., Dev Growth Differ. June 1, 2022; 64 (5): 254-260.
The functional diversity of the POUV-class proteins across vertebrates. , Bakhmet EI., Open Biol. June 1, 2022; 12 (6): 220065.
Lmo7 recruits myosin II heavy chain to regulate actomyosin contractility and apical domain size in Xenopus ectoderm. , Matsuda M., Development. May 15, 2022; 149 (10):
ARVCF catenin controls force production during vertebrate convergent extension. , Huebner RJ., Dev Cell. May 9, 2022; 57 (9): 1119-1131.e5.
Cilia-localized GID/CTLH ubiquitin ligase complex regulates protein homeostasis of sonic hedgehog signaling components. , Hantel F., J Cell Sci. May 1, 2022; 135 (9):
Lysosomes are required for early dorsal signaling in the Xenopus embryo. , Tejeda-Muñoz N., Proc Natl Acad Sci U S A. April 26, 2022; 119 (17): e2201008119.
Characterization of convergent thickening, a major convergence force producing morphogenic movement in amphibians. , Shook DR ., Elife. April 11, 2022; 11
Transmembrane H+ fluxes and the regulation of neural induction in Xenopus laevis. , Leung HC., Zygote. April 1, 2022; 30 (2): 267-278.
Global analysis of cell behavior and protein dynamics reveals region-specific roles for Shroom3 and N-cadherin during neural tube closure. , Baldwin AT., Elife. March 4, 2022; 11
Anterior patterning genes induced by Zic1 are sensitive to retinoic acid and its metabolite, 4-oxo-RA. , Dubey A., Dev Dyn. March 1, 2022; 251 (3): 498-512.
An efficient miRNA knockout approach using CRISPR-Cas9 in Xenopus. , Godden AM., Dev Biol. March 1, 2022; 483 66-75.
Hif1α and Wnt are required for posterior gene expression during Xenopus tropicalis tail regeneration. , Patel JH., Dev Biol. March 1, 2022; 483 157-168.
Injury-induced Erk1/2 signaling tissue-specifically interacts with Ca2+ activity and is necessary for regeneration of spinal cord and skeletal muscle. , Levin JB., Cell Calcium. March 1, 2022; 102 102540.
Lrrcc1 and Ccdc61 are conserved effectors of multiciliated cell function. , Nommick A., J Cell Sci. February 15, 2022; 135 (4):
Uncovering the mesendoderm gene regulatory network through multi-omic data integration. , Jansen C., Cell Rep. February 15, 2022; 38 (7): 110364.
Xenopus laevis il11ra.L is an experimentally proven interleukin-11 receptor component that is required for tadpole tail regeneration. , Suzuki S., Sci Rep. February 3, 2022; 12 (1): 1903.
PCD Genes-From Patients to Model Organisms and Back to Humans. , Niziolek M., Int J Mol Sci. February 3, 2022; 23 (3):
Xbp1 and Brachyury establish an evolutionarily conserved subcircuit of the notochord gene regulatory network. , Wu Y., Elife. January 20, 2022; 11
Systematic mapping of rRNA 2''-O methylation during frog development and involvement of the methyltransferase Fibrillarin in eye and craniofacial development in Xenopus laevis. , Delhermite J ., PLoS Genet. January 18, 2022; 18 (1): e1010012.
Targeted search for scaling genes reveals matrixmetalloproteinase 3 as a scaler of the dorsal- ventral pattern in Xenopus laevis embryos. , Orlov EE., Dev Cell. January 10, 2022; 57 (1): 95-111.e12.
CEP97 phosphorylation by Dyrk1a is critical for centriole separation during multiciliogenesis. , Lee M., J Cell Biol. January 3, 2022; 221 (1):
Reduced Retinoic Acid Signaling During Gastrulation Induces Developmental Microcephaly. , Gur M., Front Cell Dev Biol. January 1, 2022; 10 844619.
Imaging Planar Cell Polarity Proteins in Xenopus Neuroectoderm. , Ossipova O., Methods Mol Biol. January 1, 2022; 2438 147-161.