Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (55) Expression Attributions Wiki
XB-ANAT-445

Papers associated with optic stalk

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Factors determining decussation at the optic chiasma by developing retinotectal fibres in Xenopus., Beazley LD., Exp Brain Res. November 14, 1975; 23 (5): 491-504.


The orientation of the visuotectal map in Xenopus: developmental aspects., Gaze RM., J Embryol Exp Morphol. October 1, 1979; 53 39-66.


Cell movements in Xenopus eye development., Holt C., Nature. October 30, 1980; 287 (5785): 850-2.


Axonal guidance during development of the optic nerve: the role of pigmented epithelia and other extrinsic factors., Silver J., J Comp Neurol. November 10, 1981; 202 (4): 521-38.


Interaction of the transplanted olfactory placode with the optic stalk and the diencephalon in Xenopus laevis embryos., Magrassi L., Neuroscience. July 1, 1985; 15 (3): 903-21.


Factors guiding optic fibers in developing Xenopus retina., Bork T., J Comp Neurol. October 8, 1987; 264 (2): 147-58.


The development of the Xenopus retinofugal pathway: optic fibers join a pre-existing tract., Easter SS., Development. November 1, 1989; 107 (3): 553-73.


Correlated onset and patterning of proopiomelanocortin gene expression in embryonic Xenopus brain and pituitary., Hayes WP., Development. November 1, 1990; 110 (3): 747-57.              


The early development of the frog retinotectal projection., Taylor JS., Development. January 1, 1991; Suppl 2 95-104.            


Relationship between local cell division and cell displacement during regeneration of embryonic Xenopus eye fragments., Underwood LW., J Exp Zool. February 1, 1993; 265 (2): 165-77.


Xenopus Distal-less related homeobox genes are expressed in the developing forebrain and are induced by planar signals., Papalopulu N., Development. March 1, 1993; 117 (3): 961-75.          


Fate of the anterior neural ridge and the morphogenesis of the Xenopus forebrain., Eagleson G., J Neurobiol. October 1, 1995; 28 (2): 146-58.


Retinoic acid establishes ventral retinal characteristics., Hyatt GA., Development. January 1, 1996; 122 (1): 195-204.


Xenopus Pax-2 displays multiple splice forms during embryogenesis and pronephric kidney development., Heller N., Mech Dev. December 1, 1997; 69 (1-2): 83-104.        


Postgastrulation effects of fibroblast growth factor on Xenopus development., Lombardo A., Dev Dyn. May 1, 1998; 212 (1): 75-85.


Vax1 is a novel homeobox-containing gene expressed in the developing anterior ventral forebrain., Hallonet M., Development. July 1, 1998; 125 (14): 2599-610.            


The Xenopus homologue of the Drosophila gene tailless has a function in early eye development., Hollemann T., Development. July 1, 1998; 125 (13): 2425-32.          


Chondroitin sulfates modulate axon guidance in embryonic Xenopus brain., Anderson RB., Dev Biol. October 15, 1998; 202 (2): 235-43.        


Programmed cell death during Xenopus development: a spatio-temporal analysis., Hensey C., Dev Biol. November 1, 1998; 203 (1): 36-48.              


Expression of the Vax family homeobox genes suggests multiple roles in eye development., Ohsaki K., Genes Cells. May 1, 1999; 4 (5): 267-76.


Giant eyes in Xenopus laevis by overexpression of XOptx2., Zuber ME., Cell. August 6, 1999; 98 (3): 341-52.              


A homeobox gene, vax2, controls the patterning of the eye dorsoventral axis., Barbieri AM., Proc Natl Acad Sci U S A. September 14, 1999; 96 (19): 10729-34.            


Comparative analysis of embryonic gene expression defines potential interaction sites for Xenopus EphB4 receptors with ephrin-B ligands., Helbling PM., Dev Dyn. December 1, 1999; 216 (4-5): 361-73.      


Vax1, a novel homeobox-containing gene, directs development of the basal forebrain and visual system., Hallonet M., Genes Dev. December 1, 1999; 13 (23): 3106-14.    


Homeobox genes in the genetic control of eye development., Lupo G., Int J Dev Biol. January 1, 2000; 44 (6): 627-36.


Expanded retina territory by midbrain transformation upon overexpression of Six6 (Optx2) in Xenopus embryos., Bernier G., Mech Dev. May 1, 2000; 93 (1-2): 59-69.            


A direct screen for secreted proteins in Xenopus embryos identifies distinct activities for the Wnt antagonists Crescent and Frzb-1., Pera EM., Mech Dev. September 1, 2000; 96 (2): 183-95.                  


Expression of the Xvax2 gene demarcates presumptive ventral telencephalon and specific visual structures in Xenopus laevis., Liu Y., Mech Dev. January 1, 2001; 100 (1): 115-8.                


Dorsalization of the neural tube by Xenopus tiarin, a novel patterning factor secreted by the flanking nonneural head ectoderm., Tsuda H., Neuron. February 14, 2002; 33 (4): 515-28.


Axes establishment during eye morphogenesis in Xenopus by coordinate and antagonistic actions of BMP4, Shh, and RA., Sasagawa S., Genesis. June 1, 2002; 33 (2): 86-96.                      


Molecular cloning and expression analysis of dystroglycan during Xenopus laevis embryogenesis., Lunardi A., Mech Dev. December 1, 2002; 119 Suppl 1 S49-54.      


Hedgehog signalling maintains the optic stalk-retinal interface through the regulation of Vax gene activity., Take-uchi M., Development. March 1, 2003; 130 (5): 955-68.


A novel function for Hedgehog signalling in retinal pigment epithelium differentiation., Perron M., Development. April 1, 2003; 130 (8): 1565-77.                                  


Loss of maternal Smad5 in zebrafish embryos affects patterning and morphogenesis of optic primordia., Hammerschmidt M., Dev Dyn. May 1, 2003; 227 (1): 128-33.


Morphogenetic movements underlying eye field formation require interactions between the FGF and ephrinB1 signaling pathways., Moore KB., Dev Cell. January 1, 2004; 6 (1): 55-67.                


Olfactory and lens placode formation is controlled by the hedgehog-interacting protein (Xhip) in Xenopus., Cornesse Y., Dev Biol. January 15, 2005; 277 (2): 296-315.                          


A gynogenetic screen to isolate naturally occurring recessive mutations in Xenopus tropicalis., Noramly S., Mech Dev. March 1, 2005; 122 (3): 273-87.              


Dorsoventral patterning of the Xenopus eye: a collaboration of Retinoid, Hedgehog and FGF receptor signaling., Lupo G., Development. April 1, 2005; 132 (7): 1737-48.                    


Dystroglycan is required for proper retinal layering., Lunardi A., Dev Biol. February 15, 2006; 290 (2): 411-20.            


Expression of Xenopus laevis Lhx2 during eye development and evidence for divergent expression among vertebrates., Viczian AS., Dev Dyn. April 1, 2006; 235 (4): 1133-41.                  


Alterations of rx1 and pax6 expression levels at neural plate stages differentially affect the production of retinal cell types and maintenance of retinal stem cell qualities., Zaghloul NA., Dev Biol. June 1, 2007; 306 (1): 222-40.                      


Investigation of Frizzled-5 during embryonic neural development in mouse., Burns CJ., Dev Dyn. June 1, 2008; 237 (6): 1614-26.


Development of the retinotectal system in the direct-developing frog Eleutherodactylus coqui in comparison with other anurans., Schlosser G., Front Zool. June 23, 2008; 5 9.              


FGF receptor dependent regulation of Lhx9 expression in the developing nervous system., Atkinson-Leadbeater K., Dev Dyn. February 1, 2009; 238 (2): 367-75.          


Integration of telencephalic Wnt and hedgehog signaling center activities by Foxg1., Danesin C., Dev Cell. April 1, 2009; 16 (4): 576-87.              


The role of miR-124a in early development of the Xenopus eye., Qiu R., Mech Dev. October 1, 2009; 126 (10): 804-16.          


Sonic hedgehog is involved in formation of the ventral optic cup by limiting Bmp4 expression to the dorsal domain., Zhao L., Mech Dev. January 1, 2010; 127 (1-2): 62-72.                


FGFR3 expression in Xenopus laevis., Pope AP., Gene Expr Patterns. January 1, 2010; 10 (2-3): 87-92.      


Barhl2 limits growth of the diencephalic primordium through Caspase3 inhibition of beta-catenin activation., Juraver-Geslin HA., Proc Natl Acad Sci U S A. February 8, 2011; 108 (6): 2288-93.                    


Loss of the BMP antagonist, SMOC-1, causes Ophthalmo-acromelic (Waardenburg Anophthalmia) syndrome in humans and mice., Rainger J., PLoS Genet. July 1, 2011; 7 (7): e1002114.      

???pagination.result.page??? 1 2 ???pagination.result.next???