Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (23) Expression Attributions Wiki
XB-ANAT-3880

Papers associated with lung bud

Limit to papers also referencing gene:
Results 1 - 23 of 23 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Engineered transfer RNAs for suppression of premature termination codons., Lueck JD., Nat Commun. February 18, 2019; 10 (1): 822.          


Evolutionarily conserved Tbx5-Wnt2/2b pathway orchestrates cardiopulmonary development., Steimle JD., Proc Natl Acad Sci U S A. November 6, 2018; 115 (45): E10615-E10624.                                  


Mechanosensitive activation of CFTR by increased cell volume and hydrostatic pressure but not shear stress., Vitzthum C., Biochim Biophys Acta. November 1, 2015; 1848 (11 Pt A): 2942-51.


Hydrostatic pressure activates ATP-sensitive K+ channels in lung epithelium by ATP release through pannexin and connexin hemichannels., Richter K., FASEB J. January 1, 2014; 28 (1): 45-55.


Actions of hydrogen sulfide on sodium transport processes across native distal lung epithelia (Xenopus laevis)., Erb A., PLoS One. January 1, 2014; 9 (6): e100971.            


Plasticity of lung development in the amphibian, Xenopus laevis., Rose CS., Biol Open. December 15, 2013; 2 (12): 1324-35.      


Influenza matrix protein 2 alters CFTR expression and function through its ion channel activity., Londino JD., Am J Physiol Lung Cell Mol Physiol. May 1, 2013; 304 (9): L582-92.


Suppression of Bmp4 signaling by the zinc-finger repressors Osr1 and Osr2 is required for Wnt/β-catenin-mediated lung specification in Xenopus., Rankin SA, Rankin SA., Development. August 1, 2012; 139 (16): 3010-20.                                                                                


Transcriptional activation by Oct4 is sufficient for the maintenance and induction of pluripotency., Hammachi F., Cell Rep. February 23, 2012; 1 (2): 99-109.                          


Basolateral Cl- uptake mechanisms in Xenopus laevis lung epithelium., Berger J., Am J Physiol Regul Integr Comp Physiol. July 1, 2010; 299 (1): R92-100.


Alpha(1)-antitrypsin inhibits epithelial Na+ transport in vitro and in vivo., Lazrak A., Am J Respir Cell Mol Biol. September 1, 2009; 41 (3): 261-70.


Slc26a9--anion exchanger, channel and Na+ transporter., Chang MH., J Membr Biol. April 1, 2009; 228 (3): 125-40.


Impact of mechanical stress on ion transport in native lung epithelium (Xenopus laevis): short-term activation of Na+, Cl (-) and K+ channels., Bogdan R., Pflugers Arch. September 1, 2008; 456 (6): 1109-20.


CFTR-dependent Cl- secretion in Xenopus laevis lung epithelium., Sommer D., Respir Physiol Neurobiol. August 15, 2007; 158 (1): 97-106.


Regulatory interaction between CFTR and the SLC26 transporters., Shcheynikov N., Novartis Found Symp. January 1, 2006; 273 177-86; discussion 186-92, 261-4.


Prostaglandin E2 induces upregulation of Na+ transport across Xenopus lung epithelium., Berk A., J Comp Physiol B. January 1, 2004; 174 (1): 83-9.


Developmental expression of the Xenopus laevis Tbx20 orthologue., Brown DD., Dev Genes Evol. January 1, 2003; 212 (12): 604-7.


Functional characterization of three novel tissue-specific anion exchangers SLC26A7, -A8, and -A9., Lohi H., J Biol Chem. April 19, 2002; 277 (16): 14246-54.


Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placental angiogenesis., Ishikawa T., Development. January 1, 2001; 128 (1): 25-33.  


Analysis of chicken Wnt-13 expression demonstrates coincidence with cell division in the developing eye and is consistent with a role in induction., Jasoni C., Dev Dyn. July 1, 1999; 215 (3): 215-24.


Structure and expression of Wnt13, a novel mouse Wnt2 related gene., Zakin LD., Mech Dev. April 1, 1998; 73 (1): 107-16.


Amphibian development in the virtual absence of gravity., Souza KA., Proc Natl Acad Sci U S A. March 14, 1995; 92 (6): 1975-8.    


Regulation of Na+ channels in frog lung epithelium: a target tissue for aldosterone action., Fischer H., Pflugers Arch. April 1, 1990; 416 (1-2): 62-7.

Page(s): 1