Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (704) Expression Attributions Wiki
XB-ANAT-772

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 3 4 5 6 7 8 9 10 11 12 13 14 15 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Deep-brain photoreception links luminance detection to motor output in Xenopus frog tadpoles., Currie SP., Proc Natl Acad Sci U S A. May 24, 2016; 113 (21): 6053-8.                      


Multisensory integration in the developing tectum is constrained by the balance of excitation and inhibition., Felch DL., Elife. May 24, 2016; 5               


Identification of anti-cancer chemical compounds using Xenopus embryos., Tanaka M., Cancer Sci. June 1, 2016; 107 (6): 803-11.            


EGCG stabilizes growth cone filopodia and impairs retinal ganglion cell axon guidance., Atkinson-Leadbeater K., Dev Dyn. June 1, 2016; 245 (6): 667-77.          


Recording Temperature-induced Neuronal Activity through Monitoring Calcium Changes in the Olfactory Bulb of Xenopus laevis., Brinkmann A., J Vis Exp. June 3, 2016; (112):   


Fragile X Mental Retardation Protein Is Required to Maintain Visual Conditioning-Induced Behavioral Plasticity by Limiting Local Protein Synthesis., Liu HH., J Neurosci. July 6, 2016; 36 (27): 7325-39.


Fragile X mental retardation protein knockdown in the developing Xenopus tadpole optic tectum results in enhanced feedforward inhibition and behavioral deficits., Truszkowski TL., Neural Dev. August 8, 2016; 11 (1): 14.          


Endocannabinoid signaling enhances visual responses through modulation of intracellular chloride levels in retinal ganglion cells., Miraucourt LS., Elife. August 8, 2016; 5                     


Expression of the insulinoma-associated 1 (insm1) gene in Xenopus laevis tadpole retina and brain., Bosse JL., Gene Expr Patterns. September 1, 2016; 22 (1): 26-29.        


Increased apoptosis and abnormal visual behavior by histone modifications with exposure to para-xylene in developing Xenopus., Gao J., Neuroscience. September 7, 2016; 331 177-85.


Thyroid Hormone Acts Locally to Increase Neurogenesis, Neuronal Differentiation, and Dendritic Arbor Elaboration in the Tadpole Visual System., Thompson CK., J Neurosci. October 5, 2016; 36 (40): 10356-10375.


Experience-dependent plasticity of excitatory and inhibitory intertectal inputs in Xenopus tadpoles., Gambrill AC., J Neurophysiol. November 1, 2016; 116 (5): 2281-2297.


Mechanism and Regulation of DNA-Protein Crosslink Repair by the DNA-Dependent Metalloprotease SPRTN., Stingele J., Mol Cell. November 17, 2016; 64 (4): 688-703.                


An NMDA receptor-dependent mechanism for subcellular segregation of sensory inputs in the tadpole optic tectum., Hamodi AS., Elife. November 23, 2016; 5                   


Emergence of Selectivity to Looming Stimuli in a Spiking Network Model of the Optic Tectum., Jang EV., Front Neural Circuits. November 24, 2016; 10 95.            


Mapping neurogenesis onset in the optic tectum of Xenopus laevis., Herrgen L., Dev Neurobiol. December 1, 2016; 76 (12): 1328-1341.              


Early development and function of the Xenopus tadpole retinotectal circuit., Liu Z., Curr Opin Neurobiol. December 1, 2016; 41 17-23.


Mechanosensing is critical for axon growth in the developing brain., Koser DE., Nat Neurosci. December 1, 2016; 19 (12): 1592-1598.                  


Hermes Regulates Axon Sorting in the Optic Tract by Post-Trancriptional Regulation of Neuropilin 1., Hörnberg H., J Neurosci. December 14, 2016; 36 (50): 12697-12706.        


miR-182 Regulates Slit2-Mediated Axon Guidance by Modulating the Local Translation of a Specific mRNA., Bellon A., Cell Rep. January 31, 2017; 18 (5): 1171-1186.                              


Reversible developmental stasis in response to nutrient availability in the Xenopus laevis central nervous system., McKeown CR., J Exp Biol. February 1, 2017; 220 (Pt 3): 358-368.


Spinal cord regeneration in Xenopus laevis., Edwards-Faret G., Nat Protoc. February 1, 2017; 12 (2): 372-389.      


Gene expression analysis of developing cell groups in the pretectal region of Xenopus laevis., Morona R., J Comp Neurol. March 1, 2017; 525 (4): 715-752.                                            


The Nedd4 binding protein 3 is required for anterior neural development in Xenopus laevis., Kiem LM., Dev Biol. March 1, 2017; 423 (1): 66-76.                            


A cellular mechanism for inverse effectiveness in multisensory integration., Truszkowski TL., Elife. March 18, 2017; 6       


Translational profiling of retinal ganglion cell optic nerve regeneration in Xenopus laevis., Whitworth GB., Dev Biol. June 15, 2017; 426 (2): 360-373.              


Comparative analysis of monoaminergic cerebrospinal fluid-contacting cells in Osteichthyes (bony vertebrates)., Xavier AL., J Comp Neurol. June 15, 2017; 525 (9): 2265-2283.                        


Distinct cis-acting regions control six6 expression during eye field and optic cup stages of eye formation., Ledford KL., Dev Biol. June 15, 2017; 426 (2): 418-428.                        


The Gliotransmitter d-Serine Promotes Synapse Maturation and Axonal Stabilization In Vivo., Van Horn MR., J Neurosci. June 28, 2017; 37 (26): 6277-6288.                


Functional Reintegration of Sensory Neurons and Transitional Dendritic Reduction of Mitral/Tufted Cells during Injury-Induced Recovery of the Larval Xenopus Olfactory Circuit., Hawkins SJ., Front Cell Neurosci. July 21, 2017; 11 380.            


In Vivo Analysis of the Neurovascular Niche in the Developing Xenopus Brain., Lau M., eNeuro. July 31, 2017; 4 (4):                           


RNA Docking and Local Translation Regulate Site-Specific Axon Remodeling In Vivo., Wong HH., Neuron. August 16, 2017; 95 (4): 852-868.e8.                


Visual experience dependent regulation of neuronal structure and function by histone deacetylase 1 in developing Xenopus tectum in vivo., Ruan H., Dev Neurobiol. September 1, 2017; 77 (8): 947-962.


The brain is required for normal muscle and nerve patterning during early Xenopus development., Herrera-Rincon C., Nat Commun. September 25, 2017; 8 (1): 587.              


Sequence and timing of early cranial skeletal development in Xenopus laevis., Lukas P., J Morphol. January 1, 2018; 279 (1): 62-74.            


Role of the visual experience-dependent nascent proteome in neuronal plasticity., Liu HH., Elife. February 7, 2018; 7                     


Tectal corticotropin-releasing factor (CRF) neurons respond to fasting and a reactive stressor in the African Clawed Frog, Xenopus laevis., Prater CM., Gen Comp Endocrinol. March 1, 2018; 258 91-98.


Developmental changes in spinal neuronal properties, motor network configuration, and neuromodulation at free-swimming stages of Xenopus tadpoles., Currie SP., J Neurophysiol. March 1, 2018; 119 (3): 786-795.


Axon-Axon Interactions Regulate Topographic Optic Tract Sorting via CYFIP2-Dependent WAVE Complex Function., Cioni JM., Neuron. March 7, 2018; 97 (5): 1078-1093.e6.                            


Preparations and Protocols for Whole Cell Patch Clamp Recording of Xenopus laevis Tectal Neurons., Liu Z., J Vis Exp. March 15, 2018; (133):


Direct intertectal inputs are an integral component of the bilateral sensorimotor circuit for behavior in Xenopus tadpoles., Gambrill AC., J Neurophysiol. May 1, 2018; 119 (5): 1947-1961.


Microvascular anatomy of the brain of the adult pipid frog, Xenopus laevis (Daudin): A scanning electron microscopic study of vascular corrosion casts., Lametschwandtner A., J Morphol. July 1, 2018; 279 (7): 950-969.                                                                                              


Location and functions of Inebriated in the Drosophila eye., Borycz J., Biol Open. July 23, 2018; 7 (7):                 


Excitatory synaptic dysfunction cell-autonomously decreases inhibitory inputs and disrupts structural and functional plasticity., He HY., Nat Commun. July 24, 2018; 9 (1): 2893.                


Tectal CRFR1 receptors modulate food intake and feeding behavior in the South African clawed frog Xenopus laevis., Prater CM., Horm Behav. September 1, 2018; 105 86-94.


DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring., Santos RA., Neural Dev. September 15, 2018; 13 (1): 22.                  


Development of an Acute Method to Deliver Transgenes Into the Brains of Adult Xenopus laevis., Yamaguchi A., Front Neural Circuits. October 26, 2018; 12 92.                


Mutations in Kinesin family member 6 reveal specific role in ependymal cell ciliogenesis and human neurological development., Konjikusic MJ., PLoS Genet. November 6, 2018; 14 (11): e1007817.              


Physiological effects of KDM5C on neural crest migration and eye formation during vertebrate development., Kim Y., Epigenetics Chromatin. December 6, 2018; 11 (1): 72.                


Enhanced visual experience rehabilitates the injured brain in Xenopus tadpoles in an NMDAR-dependent manner., Gambrill AC., J Neurophysiol. January 1, 2019; 121 (1): 306-320.

???pagination.result.page??? ???pagination.result.prev??? 3 4 5 6 7 8 9 10 11 12 13 14 15 ???pagination.result.next???