Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (6290) Expression Attributions Wiki
XB-ANAT-475

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Cloning of a second type of activin receptor and functional characterization in Xenopus embryos., Mathews LS., Science. March 27, 1992; 255 (5052): 1702-5.


Epimorphic vs. tissue regeneration in Xenopus forelimbs., Goss RJ., J Exp Zool. April 1, 1992; 261 (4): 451-7.


A novel, activin-inducible, blastopore lip-specific gene of Xenopus laevis contains a fork head DNA-binding domain., Dirksen ML., Genes Dev. April 1, 1992; 6 (4): 599-608.              


Motile behavior and protrusive activity of migratory mesoderm cells from the Xenopus gastrula., Winklbauer R., Dev Biol. April 1, 1992; 150 (2): 335-51.


Calcium channel characteristics conferred on the sodium channel by single mutations., Heinemann SH., Nature. April 2, 1992; 356 (6368): 441-3.


Lithium-sensitive production of inositol phosphates during amphibian embryonic mesoderm induction., Maslanski JA., Science. April 10, 1992; 256 (5054): 243-5.


The marginal zone of the 32-cell amphibian embryo contains all the information required for chordamesoderm development., Pierce KE., J Exp Zool. April 15, 1992; 262 (1): 40-50.


Difference in the response to PIF/activin between animal caps excised from mid- or late blastula stages of Xenopus laevis., Brun R., Experientia. April 15, 1992; 48 (4): 405-8.


Regulation of embryonic cell adhesion by the cadherin cytoplasmic domain., Kintner C., Cell. April 17, 1992; 69 (2): 225-36.          


Secretory and inductive properties of Drosophila wingless protein in Xenopus oocytes and embryos., Chakrabarti A., Development. May 1, 1992; 115 (1): 355-69.


Comparative structural analysis of the transcriptionally active proopiomelanocortin genes A and B of Xenopus laevis., Deen PM., Mol Biol Evol. May 1, 1992; 9 (3): 483-94.


The role of premotor interneurons in phase-dependent modulation of a cutaneous reflex during swimming in Xenopus laevis embryos., Sillar KT., J Neurosci. May 1, 1992; 12 (5): 1647-57.


Distinct effects of ectopic expression of Wnt-1, activin B, and bFGF on gap junctional permeability in 32-cell Xenopus embryos., Olson DJ., Dev Biol. May 1, 1992; 151 (1): 204-12.      


Embryonic expression and functional analysis of a Xenopus activin receptor., Hemmati-Brivanlou A., Dev Dyn. May 1, 1992; 194 (1): 1-11.        


Spatial, temporal, and hormonal regulation of epidermal keratin expression during development of the frog, Xenopus laevis., Nishikawa A., Dev Biol. May 1, 1992; 151 (1): 145-53.                


Mesoderm induction and development of the embryonic axis in amniotes., Stern CD., Trends Genet. May 1, 1992; 8 (5): 158-63.


MyoD protein expression in Xenopus embryos closely follows a mesoderm induction-dependent amplification of MyoD transcription and is synchronous across the future somite axis., Harvey RP., Mech Dev. May 1, 1992; 37 (3): 141-9.


Regulation of vertebrate left-right asymmetries by extracellular matrix., Yost HJ., Nature. May 14, 1992; 357 (6374): 158-61.


Involvement of p21ras in Xenopus mesoderm induction., Whitman M., Nature. May 21, 1992; 357 (6375): 252-4.


[Frontier research on mesoderm induction in the early amphibian embryos]., Uchiyama H., Tanpakushitsu Kakusan Koso. June 1, 1992; 37 (8): 1369-80.


A labile period in the determination of the anterior-posterior axis during early neural development in Xenopus., Saha MS., Neuron. June 1, 1992; 8 (6): 1003-14.


Xenopus blastulae show regional differences in competence for mesoderm induction: correlation with endogenous basic fibroblast growth factor levels., Godsave SF., Dev Biol. June 1, 1992; 151 (2): 506-15.        


Somitogenesis in the marsupial frog Gastrotheca riobambae., Gatherer D., Int J Dev Biol. June 1, 1992; 36 (2): 283-91.


DVR-4 (bone morphogenetic protein-4) as a posterior-ventralizing factor in Xenopus mesoderm induction., Jones CM., Development. June 1, 1992; 115 (2): 639-47.


Bone morphogenetic protein 4: a ventralizing factor in early Xenopus development., Dale L., Development. June 1, 1992; 115 (2): 573-85.


Analysis of Xwnt-4 in embryos of Xenopus laevis: a Wnt family member expressed in the brain and floor plate., McGrew LL., Development. June 1, 1992; 115 (2): 463-73.              


[The effect of microinjection of anti-TGF beta-1 antibodies on the early development of Xenopus laevis]., Shou WN., Shi Yan Sheng Wu Xue Bao. June 1, 1992; 25 (2): 123-37.


[Immunohistochemical studies on the TGF beta-related protein in the early development of Xenopus laevis]., Shou WN., Shi Yan Sheng Wu Xue Bao. June 1, 1992; 25 (2): 113-21.


Localized expression of a Xenopus POU gene depends on cell-autonomous transcriptional activation and induction-dependent inactivation., Frank D., Development. June 1, 1992; 115 (2): 439-48.            


The role of growth factors in embryonic induction in Xenopus laevis., Dawid IB., Mol Reprod Dev. June 1, 1992; 32 (2): 136-44.


Molecular cloning and functional expression of mouse connexin40, a second gap junction gene preferentially expressed in lung., Hennemann H., J Cell Biol. June 1, 1992; 117 (6): 1299-310.


Wasting disease associated with cutaneous and renal nematodes, in commercially obtained Xenopus laevis., Brayton C., Ann N Y Acad Sci. June 16, 1992; 653 197-201.


Structure and expression of Xenopus prohormone convertase PC2., Braks JA., FEBS Lett. June 22, 1992; 305 (1): 45-50.


Sequence and specificity of a soluble lactose-binding lectin from Xenopus laevis skin., Marschal P., J Biol Chem. June 25, 1992; 267 (18): 12942-9.                


Gastrulation in the mouse: the role of the homeobox gene goosecoid., Blum M., Cell. June 26, 1992; 69 (7): 1097-106.


Retinoic acid prevents accumulation of a mesoderm-specific mRNA in the amphibian embryo., Brennan SM., Mech Dev. July 1, 1992; 38 (1): 17-24.


Localization of ras proto-oncogene expression during development in Xenopus laevis., Andéol Y., Mol Reprod Dev. July 1, 1992; 32 (3): 187-95.


Expression pattern of Motch, a mouse homolog of Drosophila Notch, suggests an important role in early postimplantation mouse development., Del Amo FF., Development. July 1, 1992; 115 (3): 737-44.


Developmental expression of the Xenopus int-2 (FGF-3) gene: activation by mesodermal and neural induction., Tannahill D., Development. July 1, 1992; 115 (3): 695-702.


Ventral ectoderm of Xenopus forms neural tissue, including hindbrain, in response to activin., Bolce ME., Development. July 1, 1992; 115 (3): 681-8.


Ectopic induction of dorsal mesoderm by overexpression of Xwnt-8 elevates the neural competence of Xenopus ectoderm., Otte AP., Dev Biol. July 1, 1992; 152 (1): 184-7.    


Antitumor activity of magainin analogues against human lung cancer cell lines., Ohsaki Y., Cancer Res. July 1, 1992; 52 (13): 3534-8.


xP2, a new member of the P-domain peptide family of potential growth factors, is synthesized in Xenopus laevis skin., Hauser F., J Biol Chem. July 15, 1992; 267 (20): 14451-5.            


A Xenopus borealis homeobox gene expressed preferentially in posterior ectoderm., Stickland JE., Gene. July 15, 1992; 116 (2): 269-73.        


Planar induction of anteroposterior pattern in the developing central nervous system of Xenopus laevis., Doniach T., Science. July 24, 1992; 257 (5069): 542-5.


Ectopic mesoderm formation in Xenopus embryos caused by widespread expression of a Brachyury homologue., Cunliffe V., Nature. July 30, 1992; 358 (6385): 427-30.


Intrinsic pigment cell stimulating activity in the skin of the leopard frog, Rana pipiens., Mangano FT., J Exp Zool. August 1, 1992; 263 (1): 112-8.


Ventrolateral regionalization of Xenopus laevis mesoderm is characterized by the expression of alpha-smooth muscle actin., Saint-Jeannet JP., Development. August 1, 1992; 115 (4): 1165-73.          


[Function, molecular structure and gene expression of fibroblast growth factor (FGF/HBGF)]., Shiokawa K., Nihon Rinsho. August 1, 1992; 50 (8): 1893-901.

???pagination.result.page??? ???pagination.result.prev??? 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 ???pagination.result.next???