Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1341) Expression Attributions Wiki
XB-ANAT-127

Papers associated with intestine (and rpl8)

Limit to papers also referencing gene:
Show all intestine papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Xenopus: An in vivo model for studying skin response to ultraviolet B irradiation., El Mir J., Dev Growth Differ. May 1, 2023; 65 (4): 194-202.            


Thyroid Hormone Receptor Is Essential for Larval Epithelial Apoptosis and Adult Epithelial Stem Cell Development but Not Adult Intestinal Morphogenesis during Xenopus tropicalis Metamorphosis., Shibata Y., Cells. March 3, 2021; 10 (3):                             


Thyroid hormone-induced expression of Foxl1 in subepithelial fibroblasts correlates with adult stem cell development during Xenopus intestinal remodeling., Hasebe T., Sci Rep. November 26, 2020; 10 (1): 20715.                


Thyroid hormone receptor beta is critical for intestinal remodeling during Xenopus tropicalis metamorphosis., Shibata Y., Cell Biosci. March 27, 2020; 10 46.                            


Thyroid Hormone-Induced Activation of Notch Signaling is Required for Adult Intestinal Stem Cell Development During Xenopus Laevis Metamorphosis., Hasebe T., Stem Cells. April 1, 2017; 35 (4): 1028-1039.            


Morphological, biochemical, transcriptional and epigenetic responses to fasting and refeeding in intestine of Xenopus laevis., Tamaoki K., Cell Biosci. January 21, 2016; 6 2.            


Changes in gastric sodium-iodide symporter (NIS) activity are associated with differences in thyroid gland sensitivity to perchlorate during metamorphosis., Carr JA., Gen Comp Endocrinol. August 1, 2015; 219 16-23.              


Molecular characterization and mRNA expression of ribosomal protein L8 in Rana nigromaculata during development and under exposure to hormones., Lou Q., J Environ Sci (China). November 1, 2014; 26 (11): 2331-9.


Characterization of Xenopus tissue inhibitor of metalloproteinases-2: a role in regulating matrix metalloproteinase activity during development., Fu L., PLoS One. January 1, 2012; 7 (5): e36707.            


Cytological and morphological analyses reveal distinct features of intestinal development during Xenopus tropicalis metamorphosis., Sterling J., PLoS One. January 1, 2012; 7 (10): e47407.            


Spatio-temporal expression profile of stem cell-associated gene LGR5 in the intestine during thyroid hormone-dependent metamorphosis in Xenopus laevis., Sun G., PLoS One. October 22, 2010; 5 (10): e13605.                    


Studies on Xenopus laevis intestine reveal biological pathways underlying vertebrate gut adaptation from embryo to adult., Heimeier RA., Genome Biol. January 1, 2010; 11 (5): R55.                    


Differential regulation of cell type-specific apoptosis by stromelysin-3: a potential mechanism via the cleavage of the laminin receptor during tail resorption in Xenopus laevis., Mathew S., J Biol Chem. July 3, 2009; 284 (27): 18545-56.                  


Roles of Matrix Metalloproteinases and ECM Remodeling during Thyroid Hormone-Dependent Intestinal Metamorphosis in Xenopus laevis., Fu L., Organogenesis. January 1, 2007; 3 (1): 14-9.        


Cloning and developmental regulation of tissue inhibitor of metalloproteinases-3 (TIMP3) in Xenopus laevis early embryos., Yang M., Gene. April 28, 1998; 211 (1): 95-100.      


Thyroid hormone induces apoptosis in primary cell cultures of tadpole intestine: cell type specificity and effects of extracellular matrix., Su Y., J Cell Biol. December 15, 1997; 139 (6): 1533-43.                


Temporal and spatial regulation of a putative transcriptional repressor implicates it as playing a role in thyroid hormone-dependent organ transformation., Ishizuya-Oka A., Dev Genet. January 1, 1997; 20 (4): 329-37.            


Temporal and spatial expression of an intestinal Na+/PO4 3- cotransporter correlates with epithelial transformation during thyroid hormone-dependent frog metamorphosis., Ishizuya-Oka A., Dev Genet. January 1, 1997; 20 (1): 53-66.                


Nuclear factor I as a potential regulator during postembryonic organ development., Puzianowska-Kuznicka M., J Biol Chem. March 15, 1996; 271 (11): 6273-82.                      


Xenopus sonic hedgehog as a potential morphogen during embryogenesis and thyroid hormone-dependent metamorphosis., Stolow MA., Nucleic Acids Res. July 11, 1995; 23 (13): 2555-62.                  


Thyroid hormone-dependent differential regulation of multiple arginase genes during amphibian metamorphosis., Patterton D., J Biol Chem. October 14, 1994; 269 (41): 25328-34.                

???pagination.result.page??? 1