Results 1 - 50 of 118 results
Xenopus laevis il11ra.L is an experimentally proven interleukin-11 receptor component that is required for tadpole tail regeneration. , Suzuki S., Sci Rep. February 3, 2022; 12 (1): 1903.
Identification of Isthmin 1 as a Novel Clefting and Craniofacial Patterning Gene in Humans. , Lansdon LA., Genetics. January 1, 2018; 208 (1): 283-296.
Angiopoietin-like 4 Is a Wnt Signaling Antagonist that Promotes LRP6 Turnover. , Kirsch N., Dev Cell. October 9, 2017; 43 (1): 71-82.e6.
Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells. , Zhang Z ., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.
Transcriptional dynamics of tail regeneration in Xenopus tropicalis. , Chang J., Genesis. January 1, 2017; 55 (1-2):
Two Different Functions of Connexin43 Confer Two Different Bone Phenotypes in Zebrafish. , Misu A., J Biol Chem. June 10, 2016; 291 (24): 12601-11.
Involvement of JunB Proto-Oncogene in Tail Formation During Early Xenopus Embryogenesis. , Yoshida H., Zoolog Sci. June 1, 2016; 33 (3): 282-9.
Identification of p62/ SQSTM1 as a component of non-canonical Wnt VANGL2- JNK signalling in breast cancer. , Puvirajesinghe TM., Nat Commun. January 12, 2016; 7 10318.
Xenopus: An in vivo model for imaging the inflammatory response following injury and bacterial infection. , Paredes R., Dev Biol. December 15, 2015; 408 (2): 213-28.
Mesodermal origin of median fin mesenchyme and tail muscle in amphibian larvae. , Taniguchi Y., Sci Rep. June 18, 2015; 5 11428.
Development of the vertebrate tailbud. , Beck CW ., Wiley Interdiscip Rev Dev Biol. January 1, 2015; 4 (1): 33-44.
Transcriptional regulators in the Hippo signaling pathway control organ growth in Xenopus tadpole tail regeneration. , Hayashi S., Dev Biol. December 1, 2014; 396 (1): 31-41.
Active repression by RARγ signaling is required for vertebrate axial elongation. , Janesick A ., Development. June 1, 2014; 141 (11): 2260-70.
Monensin Inhibits Canonical Wnt Signaling in Human Colorectal Cancer Cells and Suppresses Tumor Growth in Multiple Intestinal Neoplasia Mice. , Tumova L., Mol Cancer Ther. April 1, 2014; .
Enabling comparative gene expression studies of thyroid hormone action through the development of a flexible real-time quantitative PCR assay for use across multiple anuran indicator and sentinel species. , Veldhoen N., Aquat Toxicol. March 1, 2014; 148 162-73.
In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency. , Gentsch GE ., Cell Rep. September 26, 2013; 4 (6): 1185-96.
The Xenopus Tgfbi is required for embryogenesis through regulation of canonical Wnt signalling. , Wang F., Dev Biol. July 1, 2013; 379 (1): 16-27.
HNF1B controls proximal-intermediate nephron segment identity in vertebrates by regulating Notch signalling components and Irx1/2. , Heliot C., Development. February 1, 2013; 140 (4): 873-85.
Early transcriptional targets of MyoD link myogenesis and somitogenesis. , Maguire RJ ., Dev Biol. November 15, 2012; 371 (2): 256-68.
Early redox, Src family kinase, and calcium signaling integrate wound responses and tissue regeneration in zebrafish. , Yoo SK., J Cell Biol. October 15, 2012; 199 (2): 225-34.
High cell-autonomy of the anterior endomesoderm viewed in blastomere fate shift during regulative development in the isolated right halves of four-cell stage Xenopus embryos. , Koga M., Dev Growth Differ. September 1, 2012; 54 (7): 717-29.
A large scale screen for neural stem cell markers in Xenopus retina. , Parain K ., Dev Neurobiol. April 1, 2012; 72 (4): 491-506.
In vivo electroporation of morpholinos into the regenerating adult zebrafish tail fin. , Hyde DR., J Vis Exp. March 29, 2012; (61): .
Skeletal muscle regeneration in Xenopus tadpoles and zebrafish larvae. , Rodrigues AM., BMC Dev Biol. February 27, 2012; 12 9.
Agonistic and antagonistic roles for TNIK and MINK in non-canonical and canonical Wnt signalling. , Mikryukov A., PLoS One. January 1, 2012; 7 (9): e43330.
Use of fully modified 2'-O-methyl antisense oligos for loss-of-function studies in vertebrate embryos. , Schneider PN., Genesis. March 1, 2011; 49 (3): 117-23.
Specific histone lysine 4 methylation patterns define TR-binding capacity and differentiate direct T3 responses. , Bilesimo P., Mol Endocrinol. February 1, 2011; 25 (2): 225-37.
Long-distance signals are required for morphogenesis of the regenerating Xenopus tadpole tail, as shown by femtosecond-laser ablation. , Mondia JP., PLoS One. January 1, 2011; 6 (9): e24953.
A divergent Tbx6-related gene and Tbx6 are both required for neural crest and intermediate mesoderm development in Xenopus. , Callery EM ., Dev Biol. April 1, 2010; 340 (1): 75-87.
Lymph heart musculature is under distinct developmental control from lymphatic endothelium. , Peyrot SM., Dev Biol. March 15, 2010; 339 (2): 429-38.
Triclosan and anuran metamorphosis: no effect on thyroid-mediated metamorphosis in Xenopus laevis. , Fort DJ., Toxicol Sci. February 1, 2010; 113 (2): 392-400.
Zygotic VegT is required for Xenopus paraxial mesoderm formation and is regulated by Nodal signaling and Eomesodermin. , Fukuda M., Int J Dev Biol. January 1, 2010; 54 (1): 81-92.
The RNA-binding protein Seb4/ RBM24 is a direct target of MyoD and is required for myogenesis during Xenopus early development. , Li HY., Mech Dev. January 1, 2010; 127 (5-6): 281-91.
The lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) receptor gene families: cloning and comparative expression analysis in Xenopus laevis. , Massé K ., Int J Dev Biol. January 1, 2010; 54 (8-9): 1361-74.
The role and regulation of GDF11 in Smad2 activation during tailbud formation in the Xenopus embryo. , Ho DM., Mech Dev. January 1, 2010; 127 (9-12): 485-95.
Flow on the right side of the gastrocoel roof plate is dispensable for symmetry breakage in the frog Xenopus laevis. , Vick P ., Dev Biol. July 15, 2009; 331 (2): 281-91.
Temporal and spatial expression of FGF ligands and receptors during Xenopus development. , Lea R., Dev Dyn. June 1, 2009; 238 (6): 1467-79.
Malectin: a novel carbohydrate-binding protein of the endoplasmic reticulum and a candidate player in the early steps of protein N-glycosylation. , Schallus T., Mol Biol Cell. August 1, 2008; 19 (8): 3404-14.
Circadian genes are expressed during early development in Xenopus laevis. , Curran KL ., PLoS One. July 23, 2008; 3 (7): e2749.
Requirement for Wnt and FGF signaling in Xenopus tadpole tail regeneration. , Lin G ., Dev Biol. April 15, 2008; 316 (2): 323-35.
VegT, eFGF and Xbra cause overall posteriorization while Xwnt8 causes eye-level restricted posteriorization in synergy with chordin in early Xenopus development. , Fujii H., Dev Growth Differ. March 1, 2008; 50 (3): 169-80.
Arsenic as an endocrine disruptor: arsenic disrupts retinoic acid receptor-and thyroid hormone receptor-mediated gene regulation and thyroid hormone-mediated amphibian tail metamorphosis. , Davey JC., Environ Health Perspect. February 1, 2008; 116 (2): 165-72.
Two different transgenes to study gene silencing and re-expression during zebrafish caudal fin and retinal regeneration. , Thummel R., ScientificWorldJournal. December 15, 2006; 6 Suppl 1 65-81.
The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development. , Veldhoen N., Aquat Toxicol. December 1, 2006; 80 (3): 217-27.
Disruption of thyroid hormone-mediated Xenopus laevis tadpole tail tip regression by hexabromocyclododecane (HBCD) and 2,2',3,3',4,4',5,5',6-nona brominated diphenyl ether (BDE206). , Schriks M., Chemosphere. December 1, 2006; 65 (10): 1904-8.
Expression analysis of IGFBP-rP10, IGFBP-like and Mig30 in early Xenopus development. , Kuerner KM., Dev Dyn. October 1, 2006; 235 (10): 2861-7.
Temporal requirement for bone morphogenetic proteins in regeneration of the tail and limb of Xenopus tadpoles. , Beck CW ., Mech Dev. September 1, 2006; 123 (9): 674-88.
Differential role of 14-3-3 family members in Xenopus development. , Lau JM., Dev Dyn. July 1, 2006; 235 (7): 1761-76.
deltaEF1 and SIP1 are differentially expressed and have overlapping activities during Xenopus embryogenesis. , van Grunsven LA., Dev Dyn. June 1, 2006; 235 (6): 1491-500.
Real-time automated measurement of Xenopus leavis tadpole behavior and behavioral responses following triphenyltin exposure using the multispecies freshwater biomonitor (MFB). , Schriks M., Aquat Toxicol. May 10, 2006; 77 (3): 298-305.