Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (574) Expression Attributions Wiki
XB-ANAT-238

Papers associated with lens placode (and otx2)

Limit to papers also referencing gene:
Show all lens placode papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

In vitro modeling of cranial placode differentiation: Recent advances, challenges, and perspectives., Griffin C., Dev Biol. February 1, 2024; 506 20-30.


Mechanical Tensions Regulate Gene Expression in the Xenopus laevis Axial Tissues., Eroshkin FM., Int J Mol Sci. January 10, 2024; 25 (2):         


Xenopus laevis FGF receptor substrate 3 (XFrs3) is important for eye development and mediates Pax6 expression in lens placode through its Shp2-binding sites., Kim YJ., Dev Biol. January 1, 2015; 397 (1): 129-39.                                          


Temporal and spatial expression analysis of peripheral myelin protein 22 (Pmp22) in developing Xenopus., Tae HJ., Gene Expr Patterns. January 1, 2015; 17 (1): 26-30.              


Xenopus mutant reveals necessity of rax for specifying the eye field which otherwise forms tissue with telencephalic and diencephalic character., Fish MB., Dev Biol. November 15, 2014; 395 (2): 317-330.                  


Fgfr signaling is required as the early eye field forms to promote later patterning and morphogenesis of the eye., Atkinson-Leadbeater K., Dev Dyn. May 1, 2014; .              


sox4 and sox11 function during Xenopus laevis eye development., Cizelsky W., PLoS One. July 1, 2013; 8 (7): e69372.              


The Xenopus doublesex-related gene Dmrt5 is required for olfactory placode neurogenesis., Parlier D., Dev Biol. January 1, 2013; 373 (1): 39-52.                              


Mutual repression between Gbx2 and Otx2 in sensory placodes reveals a general mechanism for ectodermal patterning., Steventon B., Dev Biol. July 1, 2012; 367 (1): 55-65.                


Transcription factors involved in lens development from the preplacodal ectoderm., Ogino H., Dev Biol. March 15, 2012; 363 (2): 333-47.      


Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis., Pai VP., Development. January 1, 2012; 139 (2): 313-23.                


A homolog of Subtilisin-like Proprotein Convertase 7 is essential to anterior neural development in Xenopus., Senturker S., PLoS One. January 1, 2012; 7 (6): e39380.                


V-ATPase-dependent ectodermal voltage and pH regionalization are required for craniofacial morphogenesis., Vandenberg LN., Dev Dyn. August 1, 2011; 240 (8): 1889-904.                        


Xenopus laevis insulin receptor substrate IRS-1 is important for eye development., Bugner V., Dev Dyn. July 1, 2011; 240 (7): 1705-15.            


Peter Pan functions independently of its role in ribosome biogenesis during early eye and craniofacial cartilage development in Xenopus laevis., Bugner V., Development. June 1, 2011; 138 (11): 2369-78.                        


Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2., Guiral EC., Dev Biol. May 15, 2010; 341 (2): 375-88.                              


Generation of functional eyes from pluripotent cells., Viczian AS., PLoS Biol. August 1, 2009; 7 (8): e1000174.                                


Extracellular regulation of developmental cell signaling by XtSulf1., Freeman SD., Dev Biol. August 15, 2008; 320 (2): 436-45.            


The lens-regenerating competence in the outer cornea and epidermis of larval Xenopus laevis is related to pax6 expression., Gargioli C., J Anat. May 1, 2008; 212 (5): 612-20.


Convergence of a head-field selector Otx2 and Notch signaling: a mechanism for lens specification., Ogino H., Development. January 1, 2008; 135 (2): 249-58.          


Dicer inactivation causes heterochronic retinogenesis in Xenopus laevis., Decembrini S., Int J Dev Biol. January 1, 2008; 52 (8): 1099-103.                


Nr2e3 and Nrl can reprogram retinal precursors to the rod fate in Xenopus retina., McIlvain VA., Dev Dyn. July 1, 2007; 236 (7): 1970-9.      


Ptf1a triggers GABAergic neuronal cell fates in the retina., Dullin JP., BMC Dev Biol. May 31, 2007; 7 110.              


Novel gene ashwin functions in Xenopus cell survival and anteroposterior patterning., Patil SS., Dev Dyn. July 1, 2006; 235 (7): 1895-907.                            


Isolation and characterization of a novel gene, xMADML, involved in Xenopus laevis eye development., Elkins MB., Dev Dyn. July 1, 2006; 235 (7): 1845-57.                  


Dystroglycan is required for proper retinal layering., Lunardi A., Dev Biol. February 15, 2006; 290 (2): 411-20.            


The role of combinational coding by homeodomain and bHLH transcription factors in retinal cell fate specification., Wang JC., Dev Biol. September 1, 2005; 285 (1): 101-15.      


Olfactory and lens placode formation is controlled by the hedgehog-interacting protein (Xhip) in Xenopus., Cornesse Y., Dev Biol. January 15, 2005; 277 (2): 296-315.                          


Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus., Kuroda H., PLoS Biol. May 1, 2004; 2 (5): E92.                


Regulation of vertebrate eye development by Rx genes., Bailey TJ., Int J Dev Biol. January 1, 2004; 48 (8-9): 761-70.    


Specification of the vertebrate eye by a network of eye field transcription factors., Zuber ME., Development. November 1, 2003; 130 (21): 5155-67.        


Coordination of BMP-3b and cerberus is required for head formation of Xenopus embryos., Hino J., Dev Biol. August 1, 2003; 260 (1): 138-57.                            


Xenopus X-box binding protein 1, a leucine zipper transcription factor, is involved in the BMP signaling pathway., Zhao H., Dev Biol. May 15, 2003; 257 (2): 278-91.          


In vitro induction and transplantation of eye during early Xenopus development., Sedohara A., Dev Growth Differ. January 1, 2003; 45 (5-6): 463-71.              


Xenopus tropicalis transgenic lines and their use in the study of embryonic induction., Hirsch N., Dev Dyn. December 1, 2002; 225 (4): 522-35.              


Characterizing gene expression during lens formation in Xenopus laevis: evaluating the model for embryonic lens induction., Henry JJ., Dev Dyn. June 1, 2002; 224 (2): 168-85.        


The IGF pathway regulates head formation by inhibiting Wnt signaling in Xenopus., Richard-Parpaillon L., Dev Biol. April 15, 2002; 244 (2): 407-17.                    


The secreted glycoprotein Noelin-1 promotes neurogenesis in Xenopus., Moreno TA., Dev Biol. December 15, 2001; 240 (2): 340-60.                  


Transcription factors of the anterior neural plate alter cell movements of epidermal progenitors to specify a retinal fate., Kenyon KL., Dev Biol. December 1, 2001; 240 (1): 77-91.          


Transgenic Xenopus embryos reveal that anterior neural development requires continued suppression of BMP signaling after gastrulation., Hartley KO., Dev Biol. October 1, 2001; 238 (1): 168-84.                


Sequential activation of transcription factors in lens induction., Ogino H., Dev Growth Differ. October 1, 2000; 42 (5): 437-48.


Expanded retina territory by midbrain transformation upon overexpression of Six6 (Optx2) in Xenopus embryos., Bernier G., Mech Dev. May 1, 2000; 93 (1-2): 59-69.            


Pax6 induces ectopic eyes in a vertebrate., Chow RL., Development. October 1, 1999; 126 (19): 4213-22.              


Conservation of gene expression during embryonic lens formation and cornea-lens transdifferentiation in Xenopus laevis., Schaefer JJ., Dev Dyn. August 1, 1999; 215 (4): 308-18.        


The genetic sequence of retinal development in the ciliary margin of the Xenopus eye., Perron M., Dev Biol. July 15, 1998; 199 (2): 185-200.                    

???pagination.result.page??? 1