Results 1 - 50 of 1075 results
Opposing roles for Bmp signalling during the development of electrosensory lateral line organs. , Campbell AS., Elife. January 2, 2025; 14
Using Xenopus to discover new candidate genes involved in BOR and other congenital hearing loss syndromes. , Neal SJ., J Exp Zool B Mol Dev Evol. May 1, 2024; 342 (3): 212-240.
In vitro modeling of cranial placode differentiation: Recent advances, challenges, and perspectives. , Griffin C ., Dev Biol. February 1, 2024; 506 20-30.
Mechanical Tensions Regulate Gene Expression in the Xenopus laevis Axial Tissues. , Eroshkin FM., Int J Mol Sci. January 10, 2024; 25 (2):
The sulfotransferase XB5850668.L is required to apportion embryonic ectodermal domains. , Marchak A., Dev Dyn. December 1, 2023; 252 (12): 1407-1427.
Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation. , Cervino AS., Sci Rep. October 4, 2023; 13 (1): 16671.
Paracrine regulation of neural crest EMT by placodal MMP28. , Gouignard N ., PLoS Biol. August 1, 2023; 21 (8): e3002261.
Anterior patterning genes induced by Zic1 are sensitive to retinoic acid and its metabolite, 4-oxo-RA. , Dubey A., Dev Dyn. March 1, 2022; 251 (3): 498-512.
inka1b expression in the head mesoderm is dispensable for facial cartilage development. , Jeon H., Gene Expr Patterns. January 1, 2022; 45 119262.
Generation of a new six1-null line in Xenopus tropicalis for study of development and congenital disease. , Coppenrath K ., Genesis. December 1, 2021; 59 (12): e23453.
Collective durotaxis along a self-generated stiffness gradient in vivo. , Shellard A., Nature. December 1, 2021; 600 (7890): 690-694.
Sobp modulates the transcriptional activation of Six1 target genes and is required during craniofacial development. , Tavares ALP., Development. September 1, 2021; 148 (17):
Mapping single-cell atlases throughout Metazoa unravels cell type evolution. , Tarashansky AJ., Elife. May 4, 2021; 10
Otic Neurogenesis in Xenopus laevis: Proliferation, Differentiation, and the Role of Eya1. , Almasoudi SH., Front Neuroanat. January 1, 2021; 15 722374.
Dynamic expression of MMP28 during cranial morphogenesis. , Gouignard N ., Philos Trans R Soc Lond B Biol Sci. October 12, 2020; 375 (1809): 20190559.
Stabilization of Gaze during Early Xenopus Development by Swimming-Related Utricular Signals. , Lambert FM ., Curr Biol. February 24, 2020; 30 (4): 746-753.e4.
Transplantation of Ears Provides Insights into Inner Ear Afferent Pathfinding Properties. , Gordy C., Dev Neurobiol. November 1, 2018; 78 (11): 1064-1080.
The age-regulated zinc finger factor ZNF367 is a new modulator of neuroblast proliferation during embryonic neurogenesis. , Naef V., Sci Rep. August 7, 2018; 8 (1): 11836.
RAPGEF5 Regulates Nuclear Translocation of β-Catenin. , Griffin JN., Dev Cell. January 22, 2018; 44 (2): 248-260.e4.
Gene expression of the two developmentally regulated dermatan sulfate epimerases in the Xenopus embryo. , Gouignard N ., PLoS One. January 18, 2018; 13 (1): e0191751.
Pou3f transcription factor expression during embryonic development highlights distinct pou3f3 and pou3f4 localization in the Xenopus laevis kidney. , Cosse-Etchepare C., Int J Dev Biol. January 1, 2018; 62 (4-5): 325-333.
Xenopus pitx3 target genes lhx1 and xnr5 are identified using a novel three-fluor flow cytometry-based analysis of promoter activation and repression. , Hooker LN., Dev Dyn. September 1, 2017; 246 (9): 657-669.
Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells. , Zhang Z ., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.
Caspase-9 has a nonapoptotic function in Xenopus embryonic primitive blood formation. , Tran HT., J Cell Sci. July 15, 2017; 130 (14): 2371-2381.
The Cannabinoid Receptor Interacting Proteins 1 of zebrafish are not required for morphological development, viability or fertility. , Fin L., Sci Rep. July 7, 2017; 7 (1): 4858.
Müller glia reactivity follows retinal injury despite the absence of the glial fibrillary acidic protein gene in Xenopus. , Martinez-De Luna RI ., Dev Biol. June 15, 2017; 426 (2): 219-235.
Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis. , Ding Y ., Proc Natl Acad Sci U S A. April 11, 2017; 114 (15): E3081-E3090.
Pa2G4 is a novel Six1 co-factor that is required for neural crest and otic development. , Neilson KM ., Dev Biol. January 15, 2017; 421 (2): 171-182.
Members of the Rusc protein family interact with Sufu and inhibit vertebrate Hedgehog signaling. , Jin Z., Development. November 1, 2016; 143 (21): 3944-3955.
Comparative expression study of sipa family members during early Xenopus laevis development. , Rothe M., Dev Genes Evol. September 1, 2016; 226 (5): 369-82.
Dissecting the pre-placodal transcriptome to reveal presumptive direct targets of Six1 and Eya1 in cranial placodes. , Riddiford N., Elife. August 31, 2016; 5
Metamorphic remodeling of the olfactory organ of the African clawed frog, Xenopus laevis. , Dittrich K., J Comp Neurol. April 1, 2016; 524 (5): 986-98.
Lens regeneration from the cornea requires suppression of Wnt/ β-catenin signaling. , Hamilton PW., Exp Eye Res. April 1, 2016; 145 206-215.
N-Glycans in Xenopus laevis testis characterised by lectin histochemistry. , Valbuena G., Reprod Fertil Dev. March 1, 2016; 28 (3): 337-48.
Functional Cloning Using a Xenopus Oocyte Expression System. , Plautz CZ., J Vis Exp. January 30, 2016; (107): e53518.
Differential requirement of bone morphogenetic protein receptors Ia (ALK3) and Ib (ALK6) in early embryonic patterning and neural crest development. , Schille C., BMC Dev Biol. January 19, 2016; 16 1.
Expressional characterization of mRNA (guanine-7) methyltransferase ( rnmt) during early development of Xenopus laevis. , Lokapally A., Int J Dev Biol. January 1, 2016; 60 (1-3): 65-9.
Noggin 1 overexpression in retinal progenitors affects bipolar cell generation. , Messina A., Int J Dev Biol. January 1, 2016; 60 (4-6): 151-7.
Xenopus pax6 mutants affect eye development and other organ systems, and have phenotypic similarities to human aniridia patients. , Nakayama T ., Dev Biol. December 15, 2015; 408 (2): 328-44.
Ear manipulations reveal a critical period for survival and dendritic development at the single-cell level in Mauthner neurons. , Elliott KL., Dev Neurobiol. December 1, 2015; 75 (12): 1339-51.
RNA-Seq and microarray analysis of the Xenopus inner ear transcriptome discloses orthologous OMIM(®) genes for hereditary disorders of hearing and balance. , Ramírez-Gordillo D., BMC Res Notes. November 18, 2015; 8 691.
Dose-Dependent Early Life Stage Toxicities in Xenopus laevis Exposed In Ovo to Selenium. , Massé AJ., Environ Sci Technol. November 17, 2015; 49 (22): 13658-66.
NF2/ Merlin is required for the axial pattern formation in the Xenopus laevis embryo. , Zhu X., Mech Dev. November 1, 2015; 138 Pt 3 305-12.
Gremlin1 induces anterior- posterior limb bifurcations in developing Xenopus limbs but does not enhance limb regeneration. , Wang YH., Mech Dev. November 1, 2015; 138 Pt 3 256-67.
Cooperative and independent functions of FGF and Wnt signaling during early inner ear development. , Wright KD., BMC Dev Biol. October 6, 2015; 15 33.
Evolutionary Conservation of the Early Axon Scaffold in the Vertebrate Brain. , Ware M., Dev Dyn. October 1, 2015; 244 (10): 1202-14.
Spinal corollary discharge modulates motion sensing during vertebrate locomotion. , Chagnaud BP., Nat Commun. September 4, 2015; 6 7982.
Light sensitivity in a vertebrate mechanoreceptor? , Baker GE., J Exp Biol. September 1, 2015; 218 (Pt 18): 2826-9.
Functional analysis of Hairy genes in Xenopus neural crest initial specification and cell migration. , Vega-López GA., Dev Dyn. August 1, 2015; 244 (8): 988-1013.
Inner ear development: building a spiral ganglion and an organ of Corti out of unspecified ectoderm. , Fritzsch B ., Cell Tissue Res. July 1, 2015; .