Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (10408) Expression Attributions Wiki
XB-ANAT-111

Papers associated with embryo

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

N-terminal phosphorylation of xHes1 controls inhibition of primary neurogenesis in Xenopus., Hardwick LJA., Biochem Biophys Res Commun. February 5, 2019; 509 (2): 557-563.   


Einsteck Transplants., Cousin H., Cold Spring Harb Protoc. February 1, 2019; 2019 (2):


Spemann-Mangold Grafts., Cousin H., Cold Spring Harb Protoc. February 1, 2019; 2019 (2):


Nucleotide receptor P2RY4 is required for head formation via induction and maintenance of head organizer in Xenopus laevis., Harata A., Dev Growth Differ. February 1, 2019; 61 (2): 186-197.   


Expression of the hormonal FGF co-receptor Klotho beta in the Xenopus laevis model., Chen G., Cell Biol Int. February 1, 2019; 43 (2): 207-213.


De novo pathogenic variants in neuronal differentiation factor 2 (NEUROD2) cause a form of early infantile epileptic encephalopathy., Sega AG., J Med Genet. February 1, 2019; 56 (2): 113-122.   


Lysine demethylase 3a in craniofacial and neural development during Xenopus embryogenesis., Lee HK., Int J Mol Med. February 1, 2019; 43 (2): 1105-1113.


Xenopus slc7a5 is essential for notochord function and eye development., Katada T., Mech Dev. February 1, 2019; 155 48-59.   


Broad applicability of a streamlined ethyl cinnamate-based clearing procedure., Masselink W., Development. February 1, 2019; 146 (3):   


Six1 and Irx1 have reciprocal interactions during cranial placode and otic vesicle formation., Sullivan CH., Dev Biol. February 1, 2019; 446 (1): 68-79.   


Dual cationic-anionic profiling of metabolites in a single identified cell in a live Xenopus laevis embryo by microprobe CE-ESI-MS., Portero EP., Analyst. January 28, 2019; 144 (3): 892-900.


Non-acylated Wnts Can Promote Signaling., Speer KF., Cell Rep. January 22, 2019; 26 (4): 875-883.e5.   


Rapid changes in tissue mechanics regulate cell behaviour in the developing embryonic brain., Thompson AJ., Elife. January 15, 2019; 8   


Arid3a regulates nephric tubule regeneration via evolutionarily conserved regeneration signal-response enhancers., Suzuki N., Elife. January 8, 2019; 8   


A Label-free Multicolor Optical Surface Tomography (ALMOST) imaging method for nontransparent 3D samples., Kerstens A., BMC Biol. January 7, 2019; 17 (1): 1.   


Cleavage Blastomere Deletion and Transplantation to Test Cell Fate Commitment in Xenopus., Moody SA., Cold Spring Harb Protoc. January 2, 2019; 2019 (1):


Analysis of Cell Fate Commitment in Xenopus Embryos., Moody SA., Cold Spring Harb Protoc. January 2, 2019; 2019 (1):


Cleavage Blastomere Explant Culture in Xenopus., Moody SA., Cold Spring Harb Protoc. January 2, 2019; 2019 (1):


ChIP-Sequencing in Xenopus Embryos., Hontelez S., Cold Spring Harb Protoc. January 2, 2019; 2019 (1):


Microinjection of DNA Constructs into Xenopus Embryos for Gene Misexpression and cis-Regulatory Module Analysis., Yasuoka Y., Cold Spring Harb Protoc. January 2, 2019; 2019 (1):


Comprehensive analysis of formin localization in Xenopus epithelial cells., Higashi T., Mol Biol Cell. January 1, 2019; 30 (1): 82-95.   


Solid lipid nanoparticles for the delivery of anti-microbial oligonucleotides., González-Paredes A., Eur J Pharm Biopharm. January 1, 2019; 134 166-177.


Methods of Calpain Inhibition to Determine the Role of Calpains in Embryo Development in Amphibians., Antoniades I., Methods Mol Biol. January 1, 2019; 1915 249-259.


RASGRP2 Suppresses Apoptosis via Inhibition of ROS Production in Vascular Endothelial Cells., Sato T., ScientificWorldJournal. January 1, 2019; 2019 4639165.   


Xenbase: Facilitating the Use of Xenopus to Model Human Disease., Nenni MJ., Front Physiol. January 1, 2019; 10 154.   


Dynamin Binding Protein Is Required for Xenopus laevis Kidney Development., DeLay BD., Front Physiol. January 1, 2019; 10 143.   


The Frog Xenopus as a Model to Study Joubert Syndrome: The Case of a Human Patient With Compound Heterozygous Variants in PIBF1., Ott T., Front Physiol. January 1, 2019; 10 134.   


Liver Specification in the Absence of Cardiac Differentiation Revealed by Differential Sensitivity to Wnt/β Catenin Pathway Activation., Haworth K., Front Physiol. January 1, 2019; 10 155.   


Axis elongation during Xenopus tail-bud stage is regulated by GABA expressed in the anterior-to-mid neural tube., Furukawa T., Int J Dev Biol. January 1, 2019; 63 (1-2): 37-43.   


Latrophilin2 is involved in neural crest cell migration and placode patterning in Xenopus laevis., Yokote N., Int J Dev Biol. January 1, 2019; 63 (1-2): 29-35.   


The voltage sensing phosphatase (VSP) localizes to the apical membrane of kidney tubule epithelial cells., Ratzan W., PLoS One. January 1, 2019; 14 (4): e0209056.   


In Vivo and In Vitro Quantitative Analysis of Neural Crest Cell Migration., Barriga EH., Methods Mol Biol. January 1, 2019; 1976 135-152.


Altering the levels of nuclear import factors in early Xenopus laevis embryos affects later development., Jevtić P., PLoS One. January 1, 2019; 14 (4): e0215740.   


A YWHAZ Variant Associated With Cardiofaciocutaneous Syndrome Activates the RAF-ERK Pathway., Popov IK., Front Physiol. January 1, 2019; 10 388.   


Wolf-Hirschhorn Syndrome-Associated Genes Are Enriched in Motile Neural Crest Cells and Affect Craniofacial Development in Xenopus laevis., Mills A., Front Physiol. January 1, 2019; 10 431.   


Xenopus Resources: Transgenic, Inbred and Mutant Animals, Training Opportunities, and Web-Based Support., Horb M., Front Physiol. January 1, 2019; 10 387.   


Using the Xenopus Developmental Eye Regrowth System to Distinguish the Role of Developmental Versus Regenerative Mechanisms., Kha CX., Front Physiol. January 1, 2019; 10 502.   


Cdc42 Effector Protein 3 Interacts With Cdc42 in Regulating Xenopus Somite Segmentation., Kho M., Front Physiol. January 1, 2019; 10 542.   


Comparative analysis of p4ha1 and p4ha2 expression during Xenopus laevis development., Martini D., Int J Dev Biol. January 1, 2019; 63 (6-7): 311-316.   


The Many Faces of Xenopus: Xenopus laevis as a Model System to Study Wolf-Hirschhorn Syndrome., Lasser M., Front Physiol. January 1, 2019; 10 817.   


Comparative Embryonic Spatio-Temporal Expression Profile Map of the Xenopus P2X Receptor Family., Blanchard C., Front Cell Neurosci. January 1, 2019; 13 340.   


Silicon Uptake and Localisation in Date Palm (Phoenix dactylifera) - A Unique Association With Sclerenchyma., Bokor B., Front Plant Sci. January 1, 2019; 10 988.   


Divergent roles of the Wnt/PCP Formin Daam1 in renal ciliogenesis., Corkins ME., PLoS One. January 1, 2019; 14 (8): e0221698.   


Quantitative Phenotyping of Xenopus Embryonic Heart Pathophysiology Using Hemoglobin Contrast Subtraction Angiography to Screen Human Cardiomyopathies., Deniz E., Front Physiol. January 1, 2019; 10 1197.   


Xenopus laevis FGF16 activates the expression of genes coding for the transcription factors Sp5 and Sp5l., Elsy M., Int J Dev Biol. January 1, 2019; 63 (11-12): 631-639.   


Ventx1.1 as a Direct Repressor of Early Neural Gene zic3 in Xenopus laevis., Umair Z., Mol Cells. December 31, 2018; 41 (12): 1061-1071.   


A transition from SoxB1 to SoxE transcription factors is essential for progression from pluripotent blastula cells to neural crest cells., Buitrago-Delgado E., Dev Biol. December 15, 2018; 444 (2): 50-61.   


Emerin induces nuclear breakage in Xenopus extract and early embryos., Dilsaver MR., Mol Biol Cell. December 15, 2018; 29 (26): 3155-3167.   


The RhoGEF protein Plekhg5 regulates apical constriction of bottle cells during gastrulation., Popov IK., Development. December 12, 2018; 145 (24):   


Genetically encodable bioluminescent system from fungi., Kotlobay AA., Proc Natl Acad Sci U S A. December 11, 2018; 115 (50): 12728-12732.   

???pagination.result.page??? ???pagination.result.prev??? 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ???pagination.result.next???