Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (10397) Expression Attributions Wiki
XB-ANAT-111

Papers associated with embryo

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Reciprocal inhibitory interneurones in the Xenopus embryo spinal cord., Dale N., J Physiol. June 1, 1985; 363 61-70.


Eye-specific segregation of optic afferents in mammals, fish, and frogs: the role of activity., Schmidt JT., Cell Mol Neurobiol. June 1, 1985; 5 (1-2): 5-34.


The role of visual experience in the formation of binocular projections in frogs., Udin SB., Cell Mol Neurobiol. June 1, 1985; 5 (1-2): 85-102.


Dual-component amino-acid-mediated synaptic potentials: excitatory drive for swimming in Xenopus embryos., Dale N., J Physiol. June 1, 1985; 363 35-59.


Development and subsequent neural tube effects on the excitability of cultured Xenopus myocytes., DeCino P., J Neurosci. June 1, 1985; 5 (6): 1471-82.


Interaction of the transplanted olfactory placode with the optic stalk and the diencephalon in Xenopus laevis embryos., Magrassi L., Neuroscience. July 1, 1985; 15 (3): 903-21.


Neurite outgrowth traced by means of horseradish peroxidase inherited from neuronal ancestral cells in frog embryos., Jacobson M., Dev Biol. July 1, 1985; 110 (1): 102-13.


Activation of muscle-specific actin genes in Xenopus development by an induction between animal and vegetal cells of a blastula., Gurdon JB., Cell. July 1, 1985; 41 (3): 913-22.                      


Early specification for body position in mes-endodermal regions of an amphibian embryo., Cooke J., Cell Differ. July 1, 1985; 17 (1): 1-12.


Dynamics of the control of body pattern in the development of Xenopus laevis. I. Timing and pattern in the development of dorsoanterior and posterior blastomere pairs, isolated at the 4-cell stage., Cooke J., J Embryol Exp Morphol. August 1, 1985; 88 85-112.


Development of the lateral line system in Xenopus laevis. IV. Pattern formation in the supraorbital system., Winklbauer R., J Embryol Exp Morphol. August 1, 1985; 88 193-207.


Development of the lateral line system in Xenopus laevis. III. Development of the supraorbital system in triploid embryos and larvae., Winklbauer R., J Embryol Exp Morphol. August 1, 1985; 88 183-92.


Dynamics of the control of body pattern in the development of Xenopus laevis. III. Timing and pattern after u.v. irradiation of the egg and after excision of presumptive head endo-mesoderm., Cooke J., J Embryol Exp Morphol. August 1, 1985; 88 135-50.


Dynamics of the control of body pattern in the development of Xenopus laevis. II. Timing and pattern in the development of single blastomeres (presumptive lateral halves) isolated at the 2-cell stage., Cooke J., J Embryol Exp Morphol. August 1, 1985; 88 113-33.


The embryotoxic and osteolathyrogenic effects of semicarbazide., Schultz TW., Toxicology. August 1, 1985; 36 (2-3): 183-98.


Detection of teratogenic substances in acidic mine water samples using the frog embryo teratogenesis assay--Xenopus (FETAX)., Dawson DA., J Appl Toxicol. August 1, 1985; 5 (4): 234-44.


The efficacy of three non-mammalian test systems in the identification of chemical teratogens., Sabourin TD., J Appl Toxicol. August 1, 1985; 5 (4): 227-33.


Differential participation of ventral and dorsolateral mesoderms in the hemopoiesis of Xenopus, as revealed in diploid-triploid or interspecific chimeras., Maéno M., Dev Biol. August 1, 1985; 110 (2): 503-8.


Activation of frog (Xenopus laevis) eggs by inositol trisphosphate. I. Characterization of Ca2+ release from intracellular stores., Busa WB., J Cell Biol. August 1, 1985; 101 (2): 677-82.


Epidermal keratin gene expressed in embryos of Xenopus laevis., Jonas E., Proc Natl Acad Sci U S A. August 1, 1985; 82 (16): 5413-7.


A species difference between Rana and Xenopus in the occurrence of intertectal neuronal plasticity., Kennard C., Neurosci Lett. August 5, 1985; 58 (3): 365-70.


Origin and voltage dependence of asparagine-induced depolarization in intestinal cells of Xenopus embryo., Bergman C., J Physiol. September 1, 1985; 366 197-220.


Change of karyoskeleton during spermatogenesis of Xenopus: expression of lamin LIV, a nuclear lamina protein specific for the male germ line., Benavente R., Proc Natl Acad Sci U S A. September 1, 1985; 82 (18): 6176-80.          


Dorsal lateral plate mesoderm influences proliferation and differentiation of hemopoietic stem cells derived from ventral lateral plate mesoderm during early development of Xenopus laevis embryos., Turpen JB., J Leukoc Biol. September 1, 1985; 38 (3): 415-27.


The effects of the fibre environment on the paths taken by regenerating optic nerve fibres in Xenopus., Taylor JS., J Embryol Exp Morphol. October 1, 1985; 89 383-401.


Microgravity simulation as a probe for understanding early Xenopus pattern specification., Neff AW., J Embryol Exp Morphol. October 1, 1985; 89 259-74.


Cell distributions in the retinal ganglion cell layer of adult Leptodactylid frogs after premetamorphic eye rotation., Dunlop SA., J Embryol Exp Morphol. October 1, 1985; 89 159-73.


A positive transcription factor controls the differential expression of two 5S RNA genes., Brown DD., Cell. October 1, 1985; 42 (3): 759-67.


Mesoderm induction in Xenopus laevis: a quantitative study using a cell lineage label and tissue-specific antibodies., Dale L., J Embryol Exp Morphol. October 1, 1985; 89 289-312.      


The wave of activation current in the Xenopus egg., Kline D., Dev Biol. October 1, 1985; 111 (2): 471-87.


Identification and cloning of localized maternal RNAs from Xenopus eggs., Rebagliati MR., Cell. October 1, 1985; 42 (3): 769-77.


Development of a high-affinity GABA uptake system in embryonic amphibian spinal neurons., Lamborghini JE., Dev Biol. November 1, 1985; 112 (1): 167-76.


Recent advances in our understanding of the temporal control of early embryonic development in amphibians., Satoh N., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 257-70.


A review of the theories of vertebrate neurulation and their relationship to the mechanics of neural tube birth defects., Gordon R., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 229-55.


Regional specificity of glycoconjugates in Xenopus and axolotl embryos., Slack JM., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 137-53.      


Studies on the endogenous galactose-binding lectin during early development of the embryo of Xenopus laevis., Harris H., J Cell Sci. November 1, 1985; 79 105-17.


Cytoplasmic localization and chordamesoderm induction in the frog embryo., Gimlich RL., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 89-111.


The system specifying body position in the early development of Xenopus, and its response to early perturbations., Cooke J., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 69-87.


The role of gap junctions in amphibian development., Warner AE., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 365-80.


Cell lineage labels and region-specific markers in the analysis of inductive interactions., Smith JC., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 317-31.


Single cell analysis of commitment in early embryogenesis., Heasman J., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 297-316.


Chromosome replication in early development of Xenopus laevis., Laskey RA., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 285-96.


The function and mechanism of convergent extension during gastrulation of Xenopus laevis., Keller RE., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 185-209.


Actin genes in Xenopus and their developmental control., Gurdon JB., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 125-36.    


Information transfer during embryonic induction in amphibians., Grunz H., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 349-63.


Location of influenza virus M, NP and NS1 proteins in microinjected cells., Davey J., J Gen Virol. November 1, 1985; 66 ( Pt 11) 2319-34.


Gene expression in Xenopus embryogenesis., Dawid IB., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 113-24.


The cytoskeleton of Xenopus oocytes and its role in development., Wylie CC., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 1-15.        


Inductive interactions in early amphibian development and their general nature., Nieuwkoop PD., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 333-47.


Use of the fluorochrome propidium iodide for the identification of Xenopus germ plasm during immunofluorescence studies., Smith RC., Anat Rec. December 1, 1985; 213 (4): 518-9, 536-7.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ???pagination.result.next???