Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3430) Expression Attributions Wiki
XB-ANAT-726

Papers associated with sensory system (and rpe)

Limit to papers also referencing gene:
Show all sensory system papers
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Using myc genes to search for stem cells in the ciliary margin of the Xenopus retina., Xue XY., Dev Neurobiol. April 1, 2012; 72 (4): 475-90.                      


Histology of plastic embedded amphibian embryos and larvae., Kurth T., Genesis. March 1, 2012; 50 (3): 235-50.                                


Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis., Pai VP., Development. January 1, 2012; 139 (2): 313-23.                


Loss of the BMP antagonist, SMOC-1, causes Ophthalmo-acromelic (Waardenburg Anophthalmia) syndrome in humans and mice., Rainger J., PLoS Genet. July 1, 2011; 7 (7): e1002114.      


ET3/Ednrb2 signaling is critically involved in regulating melanophore migration in Xenopus., Kawasaki-Nishihara A., Dev Dyn. June 1, 2011; 240 (6): 1454-66.                            


The Retinal Homeobox (Rx) gene is necessary for retinal regeneration., Martinez-De Luna RI., Dev Biol. May 1, 2011; 353 (1): 10-8.        


Novel strategy for subretinal delivery in Xenopus., Gonzalez-Fernandez F., Mol Vis. March 23, 2011; 17 2956-69.                      


Expression patterns of genes encoding small GTPases Ras-dva-1 and Ras-dva-2 in the Xenopus laevis tadpoles., Tereshina MB., Gene Expr Patterns. January 1, 2011; 11 (1-2): 156-61.      


The RNA-binding protein Xp54nrb isolated from a Ca²+-dependent screen is expressed in neural structures during Xenopus laevis development., Neant I., Int J Dev Biol. January 1, 2011; 55 (10-12): 923-31.        


Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs., Borchers A., Genes (Basel). November 18, 2010; 1 (3): 413-26.      


Sumoylation controls retinal progenitor proliferation by repressing cell cycle exit in Xenopus laevis., Terada K., Dev Biol. November 1, 2010; 347 (1): 180-94.                                                  


Xenopus sonic hedgehog guides retinal axons along the optic tract., Gordon L., Dev Dyn. November 1, 2010; 239 (11): 2921-32.      


Regulation of retinal homeobox gene transcription by cooperative activity among cis-elements., Martinez-de Luna RI., Gene. November 1, 2010; 467 (1-2): 13-24.                  


Retinal patterning by Pax6-dependent cell adhesion molecules., Rungger-Brändle E., Dev Neurobiol. September 15, 2010; 70 (11): 764-80.                


Cellular retinol binding protein 1 modulates photoreceptor outer segment folding in the isolated eye., Wang X., Dev Neurobiol. August 1, 2010; 70 (9): 623-35.                


FMR1/FXR1 and the miRNA pathway are required for eye and neural crest development., Gessert S., Dev Biol. May 1, 2010; 341 (1): 222-35.                                                              


Regulation of photoreceptor gene expression by the retinal homeobox (Rx) gene product., Pan Y., Dev Biol. March 15, 2010; 339 (2): 494-506.              


Fourier domain optical coherence tomography as a noninvasive means for in vivo detection of retinal degeneration in Xenopus laevis tadpoles., Lee DC., Invest Ophthalmol Vis Sci. February 1, 2010; 51 (2): 1066-70.


A directional Wnt/beta-catenin-Sox2-proneural pathway regulates the transition from proliferation to differentiation in the Xenopus retina., Agathocleous M., Development. October 1, 2009; 136 (19): 3289-99.                          


The role of miR-124a in early development of the Xenopus eye., Qiu R., Mech Dev. October 1, 2009; 126 (10): 804-16.          


Generation of functional eyes from pluripotent cells., Viczian AS., PLoS Biol. August 1, 2009; 7 (8): e1000174.                                


Retina and lens regeneration in anuran amphibians., Filoni S., Semin Cell Dev Biol. July 1, 2009; 20 (5): 528-34.  


Retinal regeneration in the Xenopus laevis tadpole: a new model system., Vergara MN., Mol Vis. May 18, 2009; 15 1000-13.          


Developmental expression of retinoic acid receptors (RARs)., Dollé P., Nucl Recept Signal. May 12, 2009; 7 e006.            


Chemical genomics identifies compounds affecting Xenopus laevis pigment cell development., Tomlinson ML., Mol Biosyst. April 1, 2009; 5 (4): 376-84.


The role of Xenopus Rx-L in photoreceptor cell determination., Wu HY., Dev Biol. March 15, 2009; 327 (2): 352-65.            


Cytoplasmic polyadenylation and cytoplasmic polyadenylation element-dependent mRNA regulation are involved in Xenopus retinal axon development., Lin AC., Neural Dev. March 2, 2009; 4 8.              


Immunohistochemical analysis of Musashi-1 expression during retinal regeneration of adult newt., Kaneko J., Neurosci Lett. February 6, 2009; 450 (3): 252-7.


Cloning and expression analysis of the anterior parahox genes, Gsh1 and Gsh2 from Xenopus tropicalis., Illes JC., Dev Dyn. January 1, 2009; 238 (1): 194-203.                                


Pleiotropic effects in Eya3 knockout mice., Söker T., BMC Dev Biol. June 23, 2008; 8 118.                    


Cloning and functional characterization of the proton-coupled electrogenic folate transporter and analysis of its expression in retinal cell types., Umapathy NS., Invest Ophthalmol Vis Sci. November 1, 2007; 48 (11): 5299-305.


Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin., Tam BM., J Neurosci. August 22, 2007; 27 (34): 9043-53.              


Expression patterns of chick Musashi-1 in the developing nervous system., Wilson JM., Gene Expr Patterns. August 1, 2007; 7 (7): 817-25.            


Nr2e3 and Nrl can reprogram retinal precursors to the rod fate in Xenopus retina., McIlvain VA., Dev Dyn. July 1, 2007; 236 (7): 1970-9.      


Heme carrier protein 1 (HCP1) expression and functional analysis in the retina and retinal pigment epithelium., Sharma S., Exp Cell Res. April 1, 2007; 313 (6): 1251-9.


Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina., Yoshii C., Dev Biol. March 1, 2007; 303 (1): 45-56.                    


Regeneration of the amphibian retina: role of tissue interaction and related signaling molecules on RPE transdifferentiation., Araki M., Dev Growth Differ. February 1, 2007; 49 (2): 109-20.                


tBid mediated activation of the mitochondrial death pathway leads to genetic ablation of the lens in Xenopus laevis., Du Pasquier D., Genesis. January 1, 2007; 45 (1): 1-10.            


Expression of Bmp ligands and receptors in the developing Xenopus retina., Hocking JC., Int J Dev Biol. January 1, 2007; 51 (2): 161-5.        


Xenopus cadherin-6 regulates growth and epithelial development of the retina., Ruan G., Mech Dev. December 1, 2006; 123 (12): 881-92.        


Shroom2 (APXL) regulates melanosome biogenesis and localization in the retinal pigment epithelium., Fairbank PD., Development. October 1, 2006; 133 (20): 4109-18.                    


Cholesterol homeostasis in development: the role of Xenopus 7-dehydrocholesterol reductase (Xdhcr7) in neural development., Tadjuidje E., Dev Dyn. August 1, 2006; 235 (8): 2095-110.                          


Eye and neural defects associated with loss of GDF6., Hanel ML., BMC Dev Biol. June 6, 2006; 6 43.          


Evi1 is specifically expressed in the distal tubule and duct of the Xenopus pronephros and plays a role in its formation., Van Campenhout C., Dev Biol. June 1, 2006; 294 (1): 203-19.                


RPE65 surface epitopes, protein interactions, and expression in rod- and cone-dominant species., Hemati N., Mol Vis. December 21, 2005; 11 1151-65.


Pigmented epithelium to retinal transdifferentiation and Pax6 expression in larval Xenopus laevis., Arresta E., J Exp Zool A Comp Exp Biol. November 1, 2005; 303 (11): 958-67.


Regulation of melanoblast and retinal pigment epithelium development by Xenopus laevis Mitf., Kumasaka M., Dev Dyn. November 1, 2005; 234 (3): 523-34.      


Transdifferentiation of the retinal pigment epithelia to the neural retina by transfer of the Pax6 transcriptional factor., Azuma N., Hum Mol Genet. April 15, 2005; 14 (8): 1059-68.


Frizzled 5 signaling governs the neural potential of progenitors in the developing Xenopus retina., Van Raay TJ., Neuron. April 7, 2005; 46 (1): 23-36.                        


Olfactory and lens placode formation is controlled by the hedgehog-interacting protein (Xhip) in Xenopus., Cornesse Y., Dev Biol. January 15, 2005; 277 (2): 296-315.                          

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 ???pagination.result.next???