Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (149) Expression Attributions Wiki
XB-ANAT-3853

Papers associated with melanotrope (and pomc)

Limit to papers also referencing gene:
Show all melanotrope papers
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2

Sort Newest To Oldest Sort Oldest To Newest

Cell-type-specific and selectively induced expression of members of the p24 family of putative cargo receptors., Rötter J., J Cell Sci. March 1, 2002; 115 (Pt 5): 1049-58.  


Dynamics and plasticity of peptidergic control centres in the retino-brain-pituitary system of Xenopus laevis., Kramer BM., Microsc Res Tech. August 1, 2001; 54 (3): 188-99.


Differential induction of two p24delta putative cargo receptors upon activation of a prohormone-producing cell., Kuiper RP., Mol Biol Cell. January 1, 2000; 11 (1): 131-40.


Biosynthesis of the vacuolar H+-ATPase accessory subunit Ac45 in Xenopus pituitary., Holthuis JC., Eur J Biochem. June 1, 1999; 262 (2): 484-91.


Dynamics of proopiomelanocortin and prohormone convertase 2 gene expression in Xenopus melanotrope cells during long-term background adaptation., Dotman CH., J Endocrinol. November 1, 1998; 159 (2): 281-6.


Cholinergic regulation of the pituitary: autoexcitatory control by acetylcholine of melanotrope cell activity in Xenopus laevis., van Strien FJ., Ann N Y Acad Sci. May 15, 1998; 839 66-73.


Distribution of pro-opiomelanocortin and its peptide end products in the brain and hypophysis of the aquatic toad, Xenopus laevis., Tuinhof R., Cell Tissue Res. May 1, 1998; 292 (2): 251-65.


The secretory granule and pro-opiomelanocortin processing in Xenopus melanotrope cells during background adaptation., Berghs CA., J Histochem Cytochem. December 1, 1997; 45 (12): 1673-82.  


Background adaptation by Xenopus laevis: a model for studying neuronal information processing in the pituitary pars intermedia., Roubos EW., Comp Biochem Physiol A Physiol. November 1, 1997; 118 (3): 533-50.


Physiologically induced Fos expression in the hypothalamo-hypophyseal system of Xenopus laevis., Ubink R., Neuroendocrinology. June 1, 1997; 65 (6): 413-22.


Immunocytochemical localization of prohormone convertases PC1 and PC2 in the anuran pituitary gland: subcellular localization in corticotrope and melanotrope cells., Kurabuchi S., Cell Tissue Res. June 1, 1997; 288 (3): 485-96.


Acetylcholine autoexcites the release of proopiomelanocortin-derived peptides from melanotrope cells of Xenopus laevis via an M1 muscarinic receptor., Van Strien FJ., Endocrinology. October 1, 1996; 137 (10): 4298-307.


Identification of POMC processing products in single melanotrope cells by matrix-assisted laser desorption/ionization mass spectrometry., van Strien FJ., FEBS Lett. January 29, 1996; 379 (2): 165-70.


Inhibition of alpha-MSH secretion is associated with increased cyclic-AMP egress from the neurointermediate lobe of Xenopus laevis., Leenders HJ., Life Sci. November 17, 1995; 57 (26): 2447-53.


Biosynthesis and processing of the N-terminal part of proopiomelanocortin in Xenopus laevis: characterization of gamma-MSH peptides., van Strien FJ., J Neuroendocrinol. October 1, 1995; 7 (10): 807-15.


Molecular probing of the secretory pathway in peptide hormone-producing cells., Holthuis JC., J Cell Sci. October 1, 1995; 108 ( Pt 10) 3295-305.


The secretion of alpha-MSH from xenopus melanotropes involves calcium influx through omega-conotoxin-sensitive voltage-operated calcium channels., Scheenen WJ., J Neuroendocrinol. August 1, 1994; 6 (4): 457-64.


Central control of melanotrope cells of Xenopus laevis., Tuinhof R., Eur J Morphol. August 1, 1994; 32 (2-4): 307-10.


Involvement of retinohypothalamic input, suprachiasmatic nucleus, magnocellular nucleus and locus coeruleus in control of melanotrope cells of Xenopus laevis: a retrograde and anterograde tracing study., Tuinhof R., Neuroscience. July 1, 1994; 61 (2): 411-20.


Action of stimulatory and inhibitory alpha-MSH secretagogues on spontaneous calcium oscillations in melanotrope cells of Xenopus laevis., Scheenen WJ., Pflugers Arch. June 1, 1994; 427 (3-4): 244-51.


Effects of background adaptation on alpha-MSH and beta-endorphin in secretory granule types of melanotrope cells of Xenopus laevis., Roubos EW., Cell Tissue Res. December 1, 1993; 274 (3): 587-96.


Analysis of inositol phosphate metabolism in melanotrope cells of Xenopus laevis in relation to background adaptation., Jenks BG., Ann N Y Acad Sci. May 31, 1993; 680 188-98.


Alpha,N-acetyl beta-endorphin [1-8] is the terminal product of processing of endorphins in the melanotrope cells of Xenopus laevis, as demonstrated by FAB tandem mass spectrometry., van Strien FJ., Biochem Biophys Res Commun. February 26, 1993; 191 (1): 262-8.


Differential effects of coexisting dopamine, GABA and NPY on alpha-MSH secretion from melanotrope cells of Xenopus laevis., Leenders HJ., Life Sci. January 1, 1993; 52 (24): 1969-75.


Analysis of autofeedback mechanisms in the secretion of pro-opiomelanocortin-derived peptides by melanotrope cells of Xenopus laevis., de Koning HP., Gen Comp Endocrinol. September 1, 1992; 87 (3): 394-401.


Structure and expression of Xenopus prohormone convertase PC2., Braks JA., FEBS Lett. June 22, 1992; 305 (1): 45-50.


Transcriptional and posttranscriptional regulation of the proopiomelanocortin gene in the pars intermedia of the pituitary gland of Xenopus laevis., Ayoubi TA., Endocrinology. June 1, 1992; 130 (6): 3560-6.


Evolutionary conservation of the 14-3-3 protein., Martens GJ., Biochem Biophys Res Commun. May 15, 1992; 184 (3): 1456-9.


Dynamics of cyclic-AMP efflux in relation to alpha-MSH secretion from melanotrope cells of Xenopus laevis., de Koning HP., Life Sci. January 1, 1992; 51 (21): 1667-73.


Coordinated expression of 7B2 and alpha MSH in the melanotrope cells of Xenopus laevis. An immunocytochemical and in situ hybridization study., Ayoubi TA., Cell Tissue Res. May 1, 1991; 264 (2): 329-34.


A slow and a fast secretory compartment of POMC-derived peptides in the neurointermediate lobe of the amphibian Xenopus laevis., Van Zoest ID., Comp Biochem Physiol C Comp Pharmacol Toxicol. January 1, 1990; 96 (1): 199-203.

???pagination.result.page??? ???pagination.result.prev??? 1 2