Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (984) Expression Attributions Wiki
XB-ANAT-160

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Corepressor requirement and thyroid hormone receptor function during Xenopus development., Sachs LM., Vitam Horm. January 1, 2004; 68 209-30.


Assessment of hormonal activity of UV filters in tadpoles of frog Xenopus laevis at environmental concentrations., Kunz PY., Mar Environ Res. January 1, 2004; 58 (2-5): 431-5.


Thyroid hormone controls the development of connections between the spinal cord and limbs during Xenopus laevis metamorphosis., Marsh-Armstrong N., Proc Natl Acad Sci U S A. January 6, 2004; 101 (1): 165-70.   


Amphibian cardiac troponin I gene's organization, developmental expression, and regulatory properties are different from its mammalian homologue., Warkman AS., Dev Dyn. February 1, 2004; 229 (2): 275-88.


Forelimb spike regeneration in Xenopus laevis: Testing for adaptiveness., Tassava RA., J Exp Zool A Comp Exp Biol. February 1, 2004; 301 (2): 150-9.


Expression of type II iodothyronine deiodinase marks the time that a tissue responds to thyroid hormone-induced metamorphosis in Xenopus laevis., Cai L., Dev Biol. February 1, 2004; 266 (1): 87-95.   


Molecular cloning and developmental expression patterns of thyroid hormone receptors and T3 target genes in the turbot (Scophtalmus maximus) during post-embryonic development., Marchand O., Gen Comp Endocrinol. February 1, 2004; 135 (3): 345-57.


The axolotl (Ambystoma mexicanum), a neotenic amphibian, expresses functional thyroid hormone receptors., Safi R., Endocrinology. February 1, 2004; 145 (2): 760-72.


Functional characterization of pendrin in a polarized cell system. Evidence for pendrin-mediated apical iodide efflux., Gillam MP., J Biol Chem. March 26, 2004; 279 (13): 13004-10.


Developmental expression and hormonal regulation of glucocorticoid and thyroid hormone receptors during metamorphosis in Xenopus laevis., Krain LP., J Endocrinol. April 1, 2004; 181 (1): 91-104.


Recruitment of N-CoR/SMRT-TBLR1 corepressor complex by unliganded thyroid hormone receptor for gene repression during frog development., Tomita A., Mol Cell Biol. April 1, 2004; 24 (8): 3337-46.


Controlling transgene expression to study Xenopus laevis metamorphosis., Das B., Proc Natl Acad Sci U S A. April 6, 2004; 101 (14): 4839-42.   


Arrested development in Xenopus laevis tadpoles: how size constrains metamorphosis., Rot-Nikcevic I., J Exp Biol. May 1, 2004; 207 (Pt 12): 2133-45.


Spatial and temporal expression pattern of a novel gene in the frog Xenopus laevis: correlations with adult intestinal epithelial differentiation during metamorphosis., Buchholz DR., Gene Expr Patterns. May 1, 2004; 4 (3): 321-8.   


Early expression of thyroid hormone receptor beta and retinoid X receptor gamma in the Xenopus embryo., Cossette SM., Differentiation. June 1, 2004; 72 (5): 239-49.   


Spatiotemporal retinoid-X receptor activation detected in live vertebrate embryos., Luria A., Proc Natl Acad Sci U S A. June 15, 2004; 101 (24): 8987-92.   


The mouse muscle creatine kinase promoter faithfully drives reporter gene expression in transgenic Xenopus laevis., Lim W., Physiol Genomics. June 17, 2004; 18 (1): 79-86.


Induction of larval tissue resorption in Xenopus laevis tadpoles by the thyroid hormone receptor agonist GC-1., Furlow JD., J Biol Chem. June 18, 2004; 279 (25): 26555-62.


Expression and hypophysiotropic actions of corticotropin-releasing factor in Xenopus laevis., Boorse GC., Gen Comp Endocrinol. July 1, 2004; 137 (3): 272-82.


Regulation of pituitary thyrotropin gene expression during Xenopus metamorphosis: negative feedback is functional throughout metamorphosis., Manzon RG., J Endocrinol. August 1, 2004; 182 (2): 273-85.


Alternative splicing generates multiple SMRT transcripts encoding conserved repressor domains linked to variable transcription factor interaction domains., Malartre M., Nucleic Acids Res. September 1, 2004; 32 (15): 4676-86.


Estrogen response element-dependent regulation of transcriptional activation of estrogen receptors alpha and beta by coactivators and corepressors., Klinge CM., J Mol Endocrinol. October 1, 2004; 33 (2): 387-410.


Transgenic analysis reveals that thyroid hormone receptor is sufficient to mediate the thyroid hormone signal in frog metamorphosis., Buchholz DR., Mol Cell Biol. October 1, 2004; 24 (20): 9026-37.


Effect of methoxychlor on various life stages of Xenopus laevis., Fort DJ., Toxicol Sci. October 1, 2004; 81 (2): 454-66.


Activity and expression of Xenopus laevis matrix metalloproteinases: identification of a novel role for the hormone prolactin in regulating collagenolysis in both amphibians and mammals., Jung JC., J Cell Physiol. October 1, 2004; 201 (1): 155-64.


Evaluation of the developmental and reproductive toxicity of methoxychlor using an anuran (Xenopus tropicalis) chronic exposure model., Fort DJ., Toxicol Sci. October 1, 2004; 81 (2): 443-53.


Spatial and temporal expression patterns of Xenopus Nkx-2.3 gene in skin epidermis during metamorphosis., Ma CM., Gene Expr Patterns. November 1, 2004; 5 (1): 129-34.   


[Identification of two heterozygous mutations in the SLC26A4/PDS gene in a family with Pendred-syndrome]., Birkenhäger R., Laryngorhinootologie. December 1, 2004; 83 (12): 831-5.


The FoxO-subclass in Xenopus laevis development., Pohl BS., Gene Expr Patterns. December 1, 2004; 5 (2): 187-92.   


Stomach remodeling-associated changes of H+/K+-ATPase beta subunit expression in Xenopus laevis and H+/K+-ATPase-dependent acid secretion in tadpole stomach., Ikuzawa M., J Exp Zool A Comp Exp Biol. December 1, 2004; 301 (12): 992-1002.


Postmetamorphic Xenopus laevis shows decreased plasma triiodothyronine concentrations and phosphorylase activity due to subacute phytosterol exposure., Koponen PS., Chemosphere. December 1, 2004; 57 (11): 1683-9.


Nontranscriptional modulation of intracellular Ca2+ signaling by ligand stimulated thyroid hormone receptor., Saelim N., J Cell Biol. December 6, 2004; 167 (5): 915-24.   


Tachykinin and tachykinin receptor of an ascidian, Ciona intestinalis: evolutionary origin of the vertebrate tachykinin family., Satake H., J Biol Chem. December 17, 2004; 279 (51): 53798-805.


Xenopus laevis FoxE1 is primarily expressed in the developing pituitary and thyroid., El-Hodiri HM., Int J Dev Biol. January 1, 2005; 49 (7): 881-4.   


"Best friends" sharing the HMGA1 gene: comparison of the human and canine HMGA1 to orthologous other species., Murua Escobar H., J Hered. January 1, 2005; 96 (7): 777-81.


Thyroid hormone transporters., Friesema EC., Vitam Horm. January 1, 2005; 70 137-67.


Matrix metalloproteinase stromelysin-3 in development and pathogenesis., Wei L., Histol Histopathol. January 1, 2005; 20 (1): 177-85.


The matrix metalloproteinase stromelysin-3 cleaves laminin receptor at two distinct sites between the transmembrane domain and laminin binding sequence within the extracellular domain., Amano T., Cell Res. March 1, 2005; 15 (3): 150-9.


Description and initial evaluation of a Xenopus metamorphosis assay for detection of thyroid system-disrupting activities of environmental compounds., Opitz R., Environ Toxicol Chem. March 1, 2005; 24 (3): 653-64.


Expression of CCAAT/enhancer binding protein delta is closely associated with degeneration of surface mucous cells of larval stomach during the metamorphosis of Xenopus laevis., Ikuzawa M., Comp Biochem Physiol B Biochem Mol Biol. March 1, 2005; 140 (3): 505-11.


In vitro and in vivo analysis of the thyroid disrupting activities of phenolic and phenol compounds in Xenopus laevis., Kudo Y., Toxicol Sci. March 1, 2005; 84 (1): 29-37.


Remodeling of the intestine during metamorphosis of Xenopus laevis., Schreiber AM., Proc Natl Acad Sci U S A. March 8, 2005; 102 (10): 3720-5.   


Metamorphic inhibition of Xenopus laevis by sodium perchlorate: effects on development and thyroid histology., Tietge JE., Environ Toxicol Chem. April 1, 2005; 24 (4): 926-33.


Programmed cell death during amphibian metamorphosis., Nakajima K., Semin Cell Dev Biol. April 1, 2005; 16 (2): 271-80.   


Apoptosis of tail muscle during amphibian metamorphosis involves a caspase 9-dependent mechanism., Rowe I., Dev Dyn. May 1, 2005; 233 (1): 76-87.


Transgenic frogs expressing the highly fluorescent protein venus under the control of a strong mammalian promoter suitable for monitoring living cells., Sakamaki K., Dev Dyn. June 1, 2005; 233 (2): 562-9.   


Coactivator recruitment is essential for liganded thyroid hormone receptor to initiate amphibian metamorphosis., Paul BD., Mol Cell Biol. July 1, 2005; 25 (13): 5712-24.


Tissue- and gene-specific recruitment of steroid receptor coactivator-3 by thyroid hormone receptor during development., Paul BD., J Biol Chem. July 22, 2005; 280 (29): 27165-72.


A causative role of stromelysin-3 in extracellular matrix remodeling and epithelial apoptosis during intestinal metamorphosis in Xenopus laevis., Fu L., J Biol Chem. July 29, 2005; 280 (30): 27856-65.


The role of deiodinases in amphibian metamorphosis., Brown DD., Thyroid. August 1, 2005; 15 (8): 815-21.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ???pagination.result.next???