Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (30) Expression Attributions Wiki
XB-ANAT-3912

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Cdx1 and Gsc distinctly regulate the transcription of BMP4 target gene ventx3.2 by directly binding to the proximal promoter region in Xenopus gastrulae., Goutam RS., Mol Cells. March 22, 2024; 100058.                        


Analysis of Craniocardiac Malformations in Xenopus using Optical Coherence Tomography., Deniz E., Sci Rep. February 14, 2017; 7 42506.          


Mapping the dynamic expression of Wnt11 and the lineage contribution of Wnt11-expressing cells during early mouse development., Sinha T., Dev Biol. February 15, 2015; 398 (2): 177-92.                  


Expression profile of the aromatase enzyme in the Xenopus brain and localization of estradiol and estrogen receptors in each tissue., Iwabuchi J., Gen Comp Endocrinol. December 1, 2013; 194 286-94.            


Mutually exclusive signaling signatures define the hepatic and pancreatic progenitor cell lineage divergence., Rodríguez-Seguel E., Genes Dev. September 1, 2013; 27 (17): 1932-46.    


Nonoisotopic assay for the presynaptic choline transporter reveals capacity for allosteric modulation of choline uptake., Ruggiero AM., ACS Chem Neurosci. October 17, 2012; 3 (10): 767-81.


Visualisation of cerebrospinal fluid flow patterns in albino Xenopus larvae in vivo., Mogi K., Fluids Barriers CNS. April 25, 2012; 9 9.          


Identifying the evolutionary building blocks of the cardiac conduction system., Jensen B., PLoS One. January 1, 2012; 7 (9): e44231.                    


Bmp indicator mice reveal dynamic regulation of transcriptional response., Javier AL., PLoS One. January 1, 2012; 7 (9): e42566.                


The biochemical anatomy of cortical inhibitory synapses., Heller EA., PLoS One. January 1, 2012; 7 (6): e39572.            


Exogenously administered secreted frizzled related protein 2 (Sfrp2) reduces fibrosis and improves cardiac function in a rat model of myocardial infarction., He W., Proc Natl Acad Sci U S A. December 7, 2010; 107 (49): 21110-5.


Shox2 mediates Tbx5 activity by regulating Bmp4 in the pacemaker region of the developing heart., Puskaric S., Hum Mol Genet. December 1, 2010; 19 (23): 4625-33.            


Purinergic receptor-mediated Ca signaling in the olfactory bulb and the neurogenic area of the lateral ventricles., Hassenklöver T., Purinergic Signal. December 1, 2010; 6 (4): 429-45.                


Comparative transcriptomic analysis of follicle-enclosed oocyte maturational and developmental competence acquisition in two non-mammalian vertebrates., Gohin M., BMC Genomics. January 8, 2010; 11 18.                    


Developmental expression of retinoic acid receptors (RARs)., Dollé P., Nucl Recept Signal. May 12, 2009; 7 e006.            


Pleiotropic effects in Eya3 knockout mice., Söker T., BMC Dev Biol. June 23, 2008; 8 118.                    


Psf2 plays important roles in normal eye development in Xenopus laevis., Walter BE., Mol Vis. May 19, 2008; 14 906-21.                  


Caspase-9 regulates apoptosis/proliferation balance during metamorphic brain remodeling in Xenopus., Coen L., Proc Natl Acad Sci U S A. May 15, 2007; 104 (20): 8502-7.                    


Enhanced sensitivity and stability in two-color in situ hybridization by means of a novel chromagenic substrate combination., Hurtado R., Dev Dyn. October 1, 2006; 235 (10): 2811-6.          


Functional regeneration of the olfactory bulb requires reconnection to the olfactory nerve in Xenopus larvae., Yoshino J., Dev Growth Differ. January 1, 2006; 48 (1): 15-24.            


Transgenic frogs expressing the highly fluorescent protein venus under the control of a strong mammalian promoter suitable for monitoring living cells., Sakamaki K., Dev Dyn. June 1, 2005; 233 (2): 562-9.            


Evidence that urocortin I acts as a neurohormone to stimulate alpha MSH release in the toad Xenopus laevis., Calle M., Dev Biol. April 8, 2005; 1040 (1-2): 14-28.              


Successful reconstitution of the non-regenerating adult telencephalon by cell transplantation in Xenopus laevis., Yoshino J., Dev Growth Differ. December 1, 2004; 46 (6): 523-34.          


Calcineurin inhibitors block dorsal-side signaling that affect late-stage development of the heart, kidney, liver, gut and somitic tissue during Xenopus embryogenesis., Yoshida Y., Dev Growth Differ. April 1, 2004; 46 (2): 139-52.      


Mr 25 000 protein, a substrate for protein serine/threonine kinases, is identified as a part of Xenopus laevis vitellogenin B1., Yoshitome S., Dev Growth Differ. June 1, 2003; 45 (3): 283-94.        


Visualization of endogenous BMP signaling during Xenopus development., Kurata T., Differentiation. February 1, 2001; 67 (1-2): 33-40.        


The Xenopus tadpole gut: fate maps and morphogenetic movements., Chalmers AD., Development. January 1, 2000; 127 (2): 381-92.                  


Pax-6 and Prox 1 expression during lens regeneration from Cynops iris and Xenopus cornea: evidence for a genetic program common to embryonic lens development., Mizuno N., Differentiation. November 1, 1999; 65 (3): 141-9.          


Lens regeneration in Xenopus is not a mere repeat of lens development, with respect to crystallin gene expression., Mizuno N., Differentiation. March 1, 1999; 64 (3): 143-9.          


Change of karyoskeleton during spermatogenesis of Xenopus: expression of lamin LIV, a nuclear lamina protein specific for the male germ line., Benavente R., Proc Natl Acad Sci U S A. September 1, 1985; 82 (18): 6176-80.          

???pagination.result.page??? 1