Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (6278) Expression Attributions Wiki
XB-ANAT-475

Papers associated with primary germ layer (and pam)

Limit to papers also referencing gene:
Show all primary germ layer papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

A CRISPR-Cas9-mediated versatile method for targeted integration of a fluorescent protein gene to visualize endogenous gene expression in Xenopus laevis., Mochii M., Dev Biol. February 1, 2024; 506 42-51.                                


Purine Biosynthesis Pathways Are Required for Myogenesis in Xenopus laevis., Duperray M., Cells. September 28, 2023; 12 (19):               


RAF1 deficiency causes a lethal syndrome that underscores RTK signaling during embryogenesis., Wong S., EMBO Mol Med. May 8, 2023; 15 (5): e17078.                


Membrane potential drives the exit from pluripotency and cell fate commitment via calcium and mTOR., Sempou E., Nat Commun. November 5, 2022; 13 (1): 6681.                                            


CRISPR/Cas9-based simple transgenesis in Xenopus laevis., Shibata Y., Dev Biol. September 1, 2022; 489 76-83.                                                        


Functions of block of proliferation 1 during anterior development in Xenopus laevis., Gärtner C., PLoS One. August 2, 2022; 17 (8): e0273507.                        


Xenopus laevis il11ra.L is an experimentally proven interleukin-11 receptor component that is required for tadpole tail regeneration., Suzuki S., Sci Rep. February 3, 2022; 12 (1): 1903.                      


Targeted search for scaling genes reveals matrixmetalloproteinase 3 as a scaler of the dorsal-ventral pattern in Xenopus laevis embryos., Orlov EE., Dev Cell. January 10, 2022; 57 (1): 95-111.e12.                                


inka1b expression in the head mesoderm is dispensable for facial cartilage development., Jeon H., Gene Expr Patterns. January 1, 2022; 45 119262.              


Ttc30a affects tubulin modifications in a model for ciliary chondrodysplasia with polycystic kidney disease., Getwan M., Proc Natl Acad Sci U S A. September 28, 2021; 118 (39):                                                   


Protocadherin-1 is expressed in the notochord of mouse embryo but is dispensable for its formation., Fukunaga K., Biochem Biophys Rep. June 15, 2021; 27 101047.          


Wnt-inducible Lrp6-APEX2 interacting proteins identify ESCRT machinery and Trk-fused gene as components of the Wnt signaling pathway., Colozza G., Sci Rep. December 9, 2020; 10 (1): 21555.            


The neurodevelopmental disorder risk gene DYRK1A is required for ciliogenesis and control of brain size in Xenopus embryos., Willsey HR., Development. June 22, 2020; 147 (21):                             


Simple embryo injection of long single-stranded donor templates with the CRISPR/Cas9 system leads to homology-directed repair in Xenopus tropicalis and Xenopus laevis., Nakayama T., Genesis. June 1, 2020; 58 (6): e23366.                


The AP-1 transcription factor JunB functions in Xenopus tail regeneration by positively regulating cell proliferation., Nakamura M., Biochem Biophys Res Commun. February 19, 2020; 522 (4): 990-995.              


NEIL1 and NEIL2 DNA glycosylases protect neural crest development against mitochondrial oxidative stress., Han D., Elife. September 30, 2019; 8                                     


The atypical mitogen-activated protein kinase ERK3 is essential for establishment of epithelial architecture., Takahashi C., J Biol Chem. June 1, 2018; 293 (22): 8342-8361.                                      


Divergent axial morphogenesis and early shh expression in vertebrate prospective floor plate., Kremnyov S., Evodevo. January 31, 2018; 9 4.                    


An analysis of MyoD-dependent transcription using CRISPR/Cas9 gene targeting in Xenopus tropicalis embryos., McQueen C., Mech Dev. August 1, 2017; 146 1-9.          


Rapid and efficient analysis of gene function using CRISPR-Cas9 in Xenopus tropicalis founders., Shigeta M., Genes Cells. July 1, 2016; 21 (7): 755-71.                


The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development., Nogueira JM., Front Aging Neurosci. May 19, 2015; 7 62.                                            


Temporal and spatial expression patterns of FoxD2 during the early development of Xenopus laevis., Pohl BS., Mech Dev. February 1, 2002; 111 (1-2): 181-4.              


Pharmacological evaluation of 1-(carboxymethyl)-3,5-diphenyl-2-methylbenzene, a novel arylacetic acid with potential anti-inflammatory properties., Cutler SJ., Inflamm Res. July 1, 1998; 47 (7): 316-24.


Tissue-specific molecular diversity of amidating enzymes (peptidylglycine alpha-hydroxylating monooxygenase and peptidylhydroxyglycine N-C lyase) in Xenopus laevis., Iwasaki Y., Eur J Biochem. June 15, 1993; 214 (3): 811-8.


Functional expression and characterization of a Xenopus laevis peptidylglycine alpha-amidating monooxygenase, AE-II, in insect-cell culture., Suzuki K., Eur J Biochem. April 1, 1993; 213 (1): 93-8.


Characterization of a Xenopus laevis skin peptidylglycine alpha-hydroxylating monooxygenase expressed in insect-cell culture., Shimoi H., Eur J Biochem. October 1, 1992; 209 (1): 189-94.


Purification and cDNA cloning of Xenopus laevis skin peptidylhydroxyglycine N-C lyase, catalyzing the second reaction of C-terminal alpha-amidation., Iwasaki Y., Eur J Biochem. November 1, 1991; 201 (3): 551-9.


Elucidation of amidating reaction mechanism by frog amidating enzyme, peptidylglycine alpha-hydroxylating monooxygenase, expressed in insect cell culture., Suzuki K., EMBO J. December 1, 1990; 9 (13): 4259-65.


Cloning of cDNA encoding a new peptide C-terminal alpha-amidating enzyme having a putative membrane-spanning domain from Xenopus laevis skin., Ohsuye K., Biochem Biophys Res Commun. February 15, 1988; 150 (3): 1275-81.


Cloning and sequence of cDNA encoding a peptide C-terminal alpha-amidating enzyme from Xenopus laevis., Mizuno K., Biochem Biophys Res Commun. October 29, 1987; 148 (2): 546-52.


Cerulein mRNA and peptide alpha-amidation activity in the skin of Xenopus laevis: stimulation by norepinephrine., Spindel ER., Gen Comp Endocrinol. July 1, 1987; 67 (1): 67-76.


Peptide C-terminal alpha-amidating enzyme purified to homogeneity from Xenopus laevis skin., Mizuno K., Biochem Biophys Res Commun. June 30, 1986; 137 (3): 984-91.

???pagination.result.page??? 1