Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (6278) Expression Attributions Wiki
XB-ANAT-475

Papers associated with primary germ layer (and bix1.2)

Limit to papers also referencing gene:
Show all primary germ layer papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Inference of the Xenopus tropicalis embryonic regulatory network and spatial gene expression patterns., Zheng Z., BMC Syst Biol. January 8, 2014; 8 3.                  


The Mix family of homeobox genes--key regulators of mesendoderm formation during vertebrate development., Pereira LA., Dev Biol. July 15, 2012; 367 (2): 163-77.        


fus/TLS orchestrates splicing of developmental regulators during gastrulation., Dichmann DS., Genes Dev. June 15, 2012; 26 (12): 1351-63.                        


Global analysis of the transcriptional network controlling Xenopus endoderm formation., Sinner D., Development. May 1, 2006; 133 (10): 1955-66.              


Regulation of apoptosis in theXenopus embryo by Bix3., Trindade M., Development. October 1, 2003; 130 (19): 4611-22.                  


Making mesoderm--upstream and downstream of Xbra., Smith JC., Int J Dev Biol. January 1, 2001; 45 (1): 219-24.    


Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif., Germain S., Genes Dev. February 15, 2000; 14 (4): 435-51.                


Bix1, a direct target of Xenopus T-box genes, causes formation of ventral mesoderm and endoderm., Tada M., Development. October 1, 1998; 125 (20): 3997-4006.


A novel Xenopus mix-like gene milk involved in the control of the endomesodermal fates., Ecochard V., Development. July 1, 1998; 125 (14): 2577-85.      

???pagination.result.page??? 1