Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (6278) Expression Attributions Wiki
XB-ANAT-475

Papers associated with primary germ layer (and fubp1)

Limit to papers also referencing gene:
Show all primary germ layer papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Epichordal vertebral column formation in Xenopus laevis., Takahashi Y., J Morphol. February 1, 2024; 285 (2): e21664.                      


FXR1 splicing is important for muscle development and biomolecular condensates in muscle cells., Smith JA., J Cell Biol. April 6, 2020; 219 (4):                           


Update on the Role of the Non-Canonical Wnt/Planar Cell Polarity Pathway in Neural Tube Defects., Wang M., Cells. October 4, 2019; 8 (10):     


Xenopus slc7a5 is essential for notochord function and eye development., Katada T., Mech Dev. February 1, 2019; 155 48-59.                


The development of the human notochord., de Bree K., PLoS One. October 4, 2018; 13 (10): e0205752.            


Xenopus, an ideal model organism to study laterality in conjoined twins., Tisler M., Genesis. January 1, 2017; 55 (1-2):         


Models of amphibian myogenesis - the case of Bombina variegata., Kiełbwna L., Int J Dev Biol. January 1, 2017; 61 (1-2): 17-27.      


Evolutionary innovation and conservation in the embryonic derivation of the vertebrate skull., Piekarski N., Nat Commun. December 1, 2014; 5 5661.                


The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning., Schlosser G., Dev Biol. May 1, 2014; 389 (1): 98-119.            


Semicircular canal morphogenesis in the zebrafish inner ear requires the function of gpr126 (lauscher), an adhesion class G protein-coupled receptor gene., Geng FS., Development. November 1, 2013; 140 (21): 4362-74.              


A molecular base for cell sorting at embryonic boundaries: contact inhibition of cadherin adhesion by ephrin/ Eph-dependent contractility., Fagotto F., Dev Cell. October 14, 2013; 27 (1): 72-87.


High cell-autonomy of the anterior endomesoderm viewed in blastomere fate shift during regulative development in the isolated right halves of four-cell stage Xenopus embryos., Koga M., Dev Growth Differ. September 1, 2012; 54 (7): 717-29.              


The tetraspanin Tm4sf3 is localized to the ventral pancreas and regulates fusion of the dorsal and ventral pancreatic buds., Jarikji Z., Development. June 1, 2009; 136 (11): 1791-800.                  


Expression of CAP2 during early Xenopus embryogenesis., Wolanski M., Int J Dev Biol. January 1, 2009; 53 (7): 1063-7.                      


Sfrp5 coordinates foregut specification and morphogenesis by antagonizing both canonical and noncanonical Wnt11 signaling., Li Y., Genes Dev. November 1, 2008; 22 (21): 3050-63.                        


A functional screen for genes involved in Xenopus pronephros development., Kyuno J., Mech Dev. July 1, 2008; 125 (7): 571-86.                                                                                      


Ventral closure, headfold fusion and definitive endoderm migration defects in mouse embryos lacking the fibronectin leucine-rich transmembrane protein FLRT3., Maretto S., Dev Biol. June 1, 2008; 318 (1): 184-93.


Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development., Strasser MJ., BMC Dev Biol. May 28, 2008; 8 58.              


The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish pronephros., Wingert RA., PLoS Genet. October 1, 2007; 3 (10): 1922-38.                


A requirement for NF-protocadherin and TAF1/Set in cell adhesion and neural tube formation., Rashid D., Dev Biol. March 1, 2006; 291 (1): 170-81.                    


Retinoic acid signaling is essential for formation of the heart tube in Xenopus., Collop AH., Dev Biol. March 1, 2006; 291 (1): 96-109.                  


Sox9, a novel pancreatic marker in Xenopus., Lee YH, Lee YH., Int J Dev Biol. September 1, 2003; 47 (6): 459-62.      


Pronephric duct extension in amphibian embryos: migration and other mechanisms., Drawbridge J., Dev Dyn. January 1, 2003; 226 (1): 1-11.  


Surface contraction waves (SCWs) in the Xenopus egg are required for the localization of the germ plasm and are dependent upon maternal stores of the kinesin-like protein Xklp1., Quaas J., Dev Biol. March 15, 2002; 243 (2): 272-80.        


Dorsoventral differences in cell-cell interactions modulate the motile behaviour of cells from the Xenopus gastrula., Reintsch WE., Dev Biol. December 15, 2001; 240 (2): 387-403.                      


Notochord patterning of the endoderm., Cleaver O., Dev Biol. June 1, 2001; 234 (1): 1-12.      


xPitx1 plays a role in specifying cement gland and head during early Xenopus development., Chang W., Genesis. February 1, 2001; 29 (2): 78-90.                        


Development and control of tissue separation at gastrulation in Xenopus., Wacker S., Dev Biol. August 15, 2000; 224 (2): 428-39.


Development of the pancreas in Xenopus laevis., Kelly OG., Dev Dyn. August 1, 2000; 218 (4): 615-27.                  


Gut specific expression using mammalian promoters in transgenic Xenopus laevis., Beck CW., Mech Dev. November 1, 1999; 88 (2): 221-7.              


Neural tube closure in Xenopus laevis involves medial migration, directed protrusive activity, cell intercalation and convergent extension., Davidson LA., Development. October 1, 1999; 126 (20): 4547-56.              


Failure of ventral closure and axial rotation in embryos lacking the proprotein convertase Furin., Roebroek AJ., Development. December 1, 1998; 125 (24): 4863-76.


Neural crest induction in Xenopus: evidence for a two-signal model., LaBonne C., Development. July 1, 1998; 125 (13): 2403-14.                  


Epithelial cell wedging and neural trough formation are induced planarly in Xenopus, without persistent vertical interactions with mesoderm., Poznanski A., Dev Biol. September 15, 1997; 189 (2): 256-69.


Tail formation as a continuation of gastrulation: the multiple cell populations of the Xenopus tailbud derive from the late blastopore lip., Gont LK., Development. December 1, 1993; 119 (4): 991-1004.                


GATA-4 is a novel transcription factor expressed in endocardium of the developing heart., Kelley C., Development. July 1, 1993; 118 (3): 817-27.                


Structure and early embryonic expression of the zebrafish engrailed-2 gene., Fjose A., Mech Dev. November 1, 1992; 39 (1-2): 51-62.


Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis., McMahon AP., Cell. September 22, 1989; 58 (6): 1075-84.                


Skin peptides in Xenopus laevis: morphological requirements for precursor processing in developing and regenerating granular skin glands., Flucher BE., J Cell Biol. December 1, 1986; 103 (6 Pt 1): 2299-309.                


Evolution of Xenopus endodermal cells cultured on different extracellular matrix components. Identification of primordial germ cells., Brustis JJ., Anat Embryol (Berl). January 1, 1984; 170 (2): 187-96.

???pagination.result.page??? 1