Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (6278) Expression Attributions Wiki
XB-ANAT-475

Papers associated with primary germ layer (and akt1)

Limit to papers also referencing gene:
Show all primary germ layer papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Pleiotropic role of TRAF7 in skull-base meningiomas and congenital heart disease., Mishra-Gorur K., Proc Natl Acad Sci U S A. April 18, 2023; 120 (16): e2214997120.                                            


AKT signaling displays multifaceted functions in neural crest development., Sittewelle M., Dev Biol. December 1, 2018; 444 Suppl 1 S144-S155.


Phosphorylation states change Otx2 activity for cell proliferation and patterning in the Xenopus embryo., Satou Y., Development. March 12, 2018; 145 (5):                             


FGF mediated MAPK and PI3K/Akt Signals make distinct contributions to pluripotency and the establishment of Neural Crest., Geary L., Elife. January 19, 2018; 7                     


Models of convergent extension during morphogenesis., Shindo A., Wiley Interdiscip Rev Dev Biol. January 1, 2018; 7 (1):                 


PFKFB4 control of AKT signaling is essential for premigratory and migratory neural crest formation., Figueiredo AL., Development. November 15, 2017; 144 (22): 4183-4194.                                


Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells., Zhang Z., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.        


The cellular and molecular mechanisms of tissue repair and regeneration as revealed by studies in Xenopus., Li J., Regeneration (Oxf). October 28, 2016; 3 (4): 198-208.        


Atypical RhoV and RhoU GTPases control development of the neural crest., Faure S., Small GTPases. October 2, 2015; 6 (4): 174-7.


Cadherin Switch during EMT in Neural Crest Cells Leads to Contact Inhibition of Locomotion via Repolarization of Forces., Scarpa E., Dev Cell. August 24, 2015; 34 (4): 421-34.                                            


PFKFB4 controls embryonic patterning via Akt signalling independently of glycolysis., Pegoraro C., Nat Commun. January 19, 2015; 6 5953.


Par3 controls neural crest migration by promoting microtubule catastrophe during contact inhibition of locomotion., Moore R., Development. December 1, 2013; 140 (23): 4763-75.                                  


FGFR1 signaling stimulates proliferation of human mesenchymal stem cells by inhibiting the cyclin-dependent kinase inhibitors p21(Waf1) and p27(Kip1)., Dombrowski C., Stem Cells. December 1, 2013; 31 (12): 2724-36.


ERK and phosphoinositide 3-kinase temporally coordinate different modes of actin-based motility during embryonic wound healing., Li J., J Cell Sci. November 1, 2013; 126 (Pt 21): 5005-17.              


Inositol kinase and its product accelerate wound healing by modulating calcium levels, Rho GTPases, and F-actin assembly., Soto X., Proc Natl Acad Sci U S A. July 2, 2013; 110 (27): 11029-34.                                      


The translational repressor 4E-BP mediates hypoxia-induced defects in myotome cells., Hidalgo M., J Cell Sci. September 1, 2012; 125 (Pt 17): 3989-4000.            


Complement fragment C3a controls mutual cell attraction during collective cell migration., Carmona-Fontaine C., Dev Cell. December 13, 2011; 21 (6): 1026-37.                


Activity of the RhoU/Wrch1 GTPase is critical for cranial neural crest cell migration., Fort P., Dev Biol. February 15, 2011; 350 (2): 451-63.                      


Appl1 is essential for the survival of Xenopus pancreas, duodenum, and stomach progenitor cells., Wen L., Dev Dyn. August 1, 2010; 239 (8): 2198-207.                                          


A role for Syndecan-4 in neural induction involving ERK- and PKC-dependent pathways., Kuriyama S., Development. February 1, 2009; 136 (4): 575-84.                    


Xenopus ADAM19 is involved in neural, neural crest and muscle development., Neuner R., Mech Dev. January 1, 2009; 126 (3-4): 240-55.                      


Inhibition of cell adhesion by xARVCF indicates a regulatory function at the plasma membrane., Reintsch WE., Dev Dyn. September 1, 2008; 237 (9): 2328-41.          


Directional migration of neural crest cells in vivo is regulated by Syndecan-4/Rac1 and non-canonical Wnt signaling/RhoA., Matthews HK., Development. May 1, 2008; 135 (10): 1771-80.                    


Makorin-2 is a neurogenesis inhibitor downstream of phosphatidylinositol 3-kinase/Akt (PI3K/Akt) signal., Yang PH., J Biol Chem. March 28, 2008; 283 (13): 8486-95.


Mechanism of activation of the Formin protein Daam1., Liu W., Proc Natl Acad Sci U S A. January 8, 2008; 105 (1): 210-5.                


KDC1, a carrot Shaker-like potassium channel, reveals its role as a silent regulatory subunit when expressed in plant cells., Bregante M., Plant Mol Biol. January 1, 2008; 66 (1-2): 61-72.


Recruitment of Cdc42 through the GAP domain of RLIP participates in remodeling of the actin cytoskeleton and is involved in Xenopus gastrulation., Boissel L., Dev Biol. December 1, 2007; 312 (1): 331-43.              


Transgenic Xenopus with prx1 limb enhancer reveals crucial contribution of MEK/ERK and PI3K/AKT pathways in blastema formation during limb regeneration., Suzuki M., Dev Biol. April 15, 2007; 304 (2): 675-86.              


Neurotrophin receptor homolog (NRH1) proteins regulate mesoderm formation and apoptosis during early Xenopus development., Knapp D., Dev Biol. December 15, 2006; 300 (2): 554-69.                  


Kermit 2/XGIPC, an IGF1 receptor interacting protein, is required for IGF signaling in Xenopus eye development., Wu J., Development. September 1, 2006; 133 (18): 3651-60.          


Migrating anterior mesoderm cells and intercalating trunk mesoderm cells have distinct responses to Rho and Rac during Xenopus gastrulation., Ren R., Dev Dyn. April 1, 2006; 235 (4): 1090-9.


Regulation of actin cytoskeleton architecture by Eps8 and Abi1., Roffers-Agarwal J., BMC Cell Biol. October 14, 2005; 6 36.                


Subcellular localization and signaling properties of dishevelled in developing vertebrate embryos., Park TJ., Curr Biol. June 7, 2005; 15 (11): 1039-44.                


FGF signal regulates gastrulation cell movements and morphology through its target NRH., Chung HA., Dev Biol. June 1, 2005; 282 (1): 95-110.                          


Paraxial protocadherin coordinates cell polarity during convergent extension via Rho A and JNK., Unterseher F., EMBO J. August 18, 2004; 23 (16): 3259-69.


p120 catenin is required for morphogenetic movements involved in the formation of the eyes and the craniofacial skeleton in Xenopus., Ciesiolka M., J Cell Sci. August 15, 2004; 117 (Pt 18): 4325-39.                      


Vertebrate development requires ARVCF and p120 catenins and their interplay with RhoA and Rac., Fang X., J Cell Biol. April 1, 2004; 165 (1): 87-98.                  


Rho guanine nucleotide exchange factor xNET1 implicated in gastrulation movements during Xenopus development., Miyakoshi A., Differentiation. February 1, 2004; 72 (1): 48-55.                  


Distinct functions of Rho and Rac are required for convergent extension during Xenopus gastrulation., Tahinci E., Dev Biol. July 15, 2003; 259 (2): 318-35.    


Localization of two IQGAPs in cultured cells and early embryos of Xenopus laevis., Yamashiro S., Cell Motil Cytoskeleton. May 1, 2003; 55 (1): 36-50.


Regulation of Xenopus embryonic cell adhesion by the small GTPase, rac., Hens MD., Biochem Biophys Res Commun. November 1, 2002; 298 (3): 364-70.


The effect of IQGAP1 on Xenopus embryonic ectoderm requires Cdc42., Sokol SY., J Biol Chem. December 21, 2001; 276 (51): 48425-30.


The EGF-CFC family: novel epidermal growth factor-related proteins in development and cancer., Saloman DS., Endocr Relat Cancer. December 1, 2000; 7 (4): 199-226.

???pagination.result.page??? 1