Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (6278) Expression Attributions Wiki
XB-ANAT-475

Papers associated with primary germ layer (and wnt4)

Limit to papers also referencing gene:
Show all primary germ layer papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Prdm15 acts upstream of Wnt4 signaling in anterior neural development of Xenopus laevis., Saumweber E., Front Cell Dev Biol. January 1, 2024; 12 1316048.                            


The enpp4 ectonucleotidase regulates kidney patterning signalling networks in Xenopus embryos., Massé K., Commun Biol. October 7, 2021; 4 (1): 1158.                                


Lens regeneration from the cornea requires suppression of Wnt/β-catenin signaling., Hamilton PW., Exp Eye Res. April 1, 2016; 145 206-215.          


Using Xenopus to study genetic kidney diseases., Lienkamp SS., Semin Cell Dev Biol. March 1, 2016; 51 117-24.    


Making muscle: Morphogenetic movements and molecular mechanisms of myogenesis in Xenopus laevis., Sabillo A., Semin Cell Dev Biol. March 1, 2016; 51 80-91.


GATA2 regulates Wnt signaling to promote primitive red blood cell fate., Mimoto MS., Dev Biol. November 1, 2015; 407 (1): 1-11.                          


Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development., Buisson I., Dev Biol. January 15, 2015; 397 (2): 175-90.                            


The Wnt/JNK signaling target gene alcam is required for embryonic kidney development., Cizelsky W., Development. May 1, 2014; 141 (10): 2064-74.          


Comparative Functional Analysis of ZFP36 Genes during Xenopus Development., Tréguer K., PLoS One. January 1, 2013; 8 (1): e54550.                          


Inversin relays Frizzled-8 signals to promote proximal pronephros development., Lienkamp S., Proc Natl Acad Sci U S A. November 23, 2010; 107 (47): 20388-93.                          


Wnt/beta-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo., Tran HT., Proc Natl Acad Sci U S A. September 14, 2010; 107 (37): 16160-5.                                                


Negative feedback regulation of Wnt4 signaling by EAF1 and EAF2/U19., Wan X., PLoS One. February 9, 2010; 5 (2): e9118.                  


[Research progress of Wif1 in development of nervous system]., Hu YA., Zhejiang Da Xue Xue Bao Yi Xue Ban. January 1, 2010; 39 (1): 93-6.


Notch activates Wnt-4 signalling to control medio-lateral patterning of the pronephros., Naylor RW., Development. November 1, 2009; 136 (21): 3585-95.                                  


In vitro organogenesis from undifferentiated cells in Xenopus., Asashima M., Dev Dyn. June 1, 2009; 238 (6): 1309-20.                      


The Xenopus Irx genes are essential for neural patterning and define the border between prethalamus and thalamus through mutual antagonism with the anterior repressors Fezf and Arx., Rodríguez-Seguel E., Dev Biol. May 15, 2009; 329 (2): 258-68.                


Xenopus Wntless and the retromer complex cooperate to regulate XWnt4 secretion., Kim H., Mol Cell Biol. April 1, 2009; 29 (8): 2118-28.  


Requirement of Wnt/beta-catenin signaling in pronephric kidney development., Lyons JP., Mech Dev. January 1, 2009; 126 (3-4): 142-59.        


Sfrp5 coordinates foregut specification and morphogenesis by antagonizing both canonical and noncanonical Wnt11 signaling., Li Y., Genes Dev. November 1, 2008; 22 (21): 3050-63.                        


A dual requirement for Iroquois genes during Xenopus kidney development., Alarcón P., Development. October 1, 2008; 135 (19): 3197-207.                            


Wnt6 expression in epidermis and epithelial tissues during Xenopus organogenesis., Lavery DL., Dev Dyn. March 1, 2008; 237 (3): 768-79.          


FGF is essential for both condensation and mesenchymal-epithelial transition stages of pronephric kidney tubule development., Urban AE., Dev Biol. September 1, 2006; 297 (1): 103-17.                    


The zic1 gene is an activator of Wnt signaling., Merzdorf CS., Int J Dev Biol. January 1, 2006; 50 (7): 611-7.              


Role of crescent in convergent extension movements by modulating Wnt signaling in early Xenopus embryogenesis., Shibata M., Mech Dev. December 1, 2005; 122 (12): 1322-39.                    


Xenopus frizzled-4S, a splicing variant of Xfz4 is a context-dependent activator and inhibitor of Wnt/beta-catenin signaling., Swain RK., Cell Commun Signal. October 19, 2005; 3 12.          


The role of XTRAP-gamma in Xenopus pronephros development., Li DH., Int J Dev Biol. January 1, 2005; 49 (4): 401-8.            


Essential function of Wnt-4 for tubulogenesis in the Xenopus pronephric kidney., Saulnier DM., Dev Biol. August 1, 2002; 248 (1): 13-28.                    


A role for Xlim-1 in pronephros development in Xenopus laevis., Chan TC., Dev Biol. December 15, 2000; 228 (2): 256-69.      


Expression of connexin 30 in Xenopus embryos and its involvement in hatching gland function., Levin M., Dev Dyn. September 1, 2000; 219 (1): 96-101.        


Antagonist activity of DWnt-4 and wingless in the Drosophila embryonic ventral ectoderm and in heterologous Xenopus assays., Gieseler K., Mech Dev. July 1, 1999; 85 (1-2): 123-31.    


Towards a molecular anatomy of the Xenopus pronephric kidney., Brändli AW., Int J Dev Biol. January 1, 1999; 43 (5): 381-95.                      


Dynamic patterns of gene expression in the developing pronephros of Xenopus laevis., Carroll TJ., Dev Genet. January 1, 1999; 24 (3-4): 199-207.        


Xwnt-11: a maternally expressed Xenopus wnt gene., Ku M., Development. December 1, 1993; 119 (4): 1161-73.              


Analysis of Xwnt-4 in embryos of Xenopus laevis: a Wnt family member expressed in the brain and floor plate., McGrew LL., Development. June 1, 1992; 115 (2): 463-73.              

???pagination.result.page??? 1