Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (6278) Expression Attributions Wiki
XB-ANAT-475

Papers associated with primary germ layer (and hoxb3)

Limit to papers also referencing gene:
Show all primary germ layer papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network., Mukherjee S., Elife. September 7, 2020; 9                           


New methods for computational decomposition of whole-mount in situ images enable effective curation of a large, highly redundant collection of Xenopus images., Patrushev I., PLoS Comput Biol. August 2, 2018; 14 (8): e1006077.          


Retinoic acid-induced expression of Hnf1b and Fzd4 is required for pancreas development in Xenopus laevis., Gere-Becker MB., Development. June 8, 2018; 145 (12):                                   


A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates., Plouhinec JL., PLoS Biol. October 19, 2017; 15 (10): e2004045.                                              


The ribosome biogenesis factor Nol11 is required for optimal rDNA transcription and craniofacial development in Xenopus., Griffin JN., PLoS Genet. March 10, 2015; 11 (3): e1005018.                              


Dhrs3 protein attenuates retinoic acid signaling and is required for early embryonic patterning., Kam RK., J Biol Chem. November 1, 2013; 288 (44): 31477-87.                    


Focal adhesion kinase protein regulates Wnt3a gene expression to control cell fate specification in the developing neural plate., Fonar Y., Mol Biol Cell. July 1, 2011; 22 (13): 2409-21.                  


Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2., Guiral EC., Dev Biol. May 15, 2010; 341 (2): 375-88.                              


Mesodermal Wnt signaling organizes the neural plate via Meis3., Elkouby YM., Development. May 1, 2010; 137 (9): 1531-41.        


Xenopus Meis3 protein lies at a nexus downstream to Zic1 and Pax3 proteins, regulating multiple cell-fates during early nervous system development., Gutkovich YE., Dev Biol. February 1, 2010; 338 (1): 50-62.                  


Retinol dehydrogenase 10 is a feedback regulator of retinoic acid signalling during axis formation and patterning of the central nervous system., Strate I., Development. February 1, 2009; 136 (3): 461-72.                


The mother superior mutation ablates foxd3 activity in neural crest progenitor cells and depletes neural crest derivatives in zebrafish., Montero-Balaguer M., Dev Dyn. December 1, 2006; 235 (12): 3199-212.      


The Meis3 protein and retinoid signaling interact to pattern the Xenopus hindbrain., Dibner C., Dev Biol. July 1, 2004; 271 (1): 75-86.              


Initiating Hox gene expression: in the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxB genes in two distinct groups., Bel-Vialar S., Development. November 1, 2002; 129 (22): 5103-15.          


XMeis3 protein activity is required for proper hindbrain patterning in Xenopus laevis embryos., Dibner C., Development. September 1, 2001; 128 (18): 3415-26.    


Regulatory analysis of the mouse Hoxb3 gene: multiple elements work in concert to direct temporal and spatial patterns of expression., Kwan CT., Dev Biol. April 1, 2001; 232 (1): 176-90.


Transient depletion of xDnmt1 leads to premature gene activation in Xenopus embryos., Stancheva I., Genes Dev. February 1, 2000; 14 (3): 313-27.                    


Hox group 3 paralogs regulate the development and migration of the thymus, thyroid, and parathyroid glands., Manley NR., Dev Biol. March 1, 1998; 195 (1): 1-15.


Hox group 3 paralogous genes act synergistically in the formation of somitic and neural crest-derived structures., Manley NR., Dev Biol. December 15, 1997; 192 (2): 274-88.


Neural induction and patterning in embryos deficient in FGF signaling., Godsave SF., Int J Dev Biol. February 1, 1997; 41 (1): 57-65.        


Plasticity of transposed rhombomeres: Hox gene induction is correlated with phenotypic modifications., Grapin-Botton A., Development. September 1, 1995; 121 (9): 2707-21.


Expression patterns of Hoxb genes in the Xenopus embryo suggest roles in anteroposterior specification of the hindbrain and in dorsoventral patterning of the mesoderm., Godsave S., Dev Biol. December 1, 1994; 166 (2): 465-76.              


The thyroid transcription factor-1 gene is a candidate target for regulation by Hox proteins., Guazzi S., EMBO J. July 15, 1994; 13 (14): 3339-47.


Conserved segmental expression of Krox-20 in the vertebrate hindbrain and its relationship to lineage restriction., Nieto MA., Development. January 1, 1991; Suppl 2 59-62.        

???pagination.result.page??? 1