Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (6278) Expression Attributions Wiki
XB-ANAT-475

Papers associated with primary germ layer (and mpo)

Limit to papers also referencing gene:
Show all primary germ layer papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Thyroid hormone receptor knockout prevents the loss of Xenopus tail regeneration capacity at metamorphic climax., Wang S., Cell Biosci. February 23, 2023; 13 (1): 40.              


A myeloperoxidase enhancer drives myeloid cell-specific labeling in a transgenic frog line., Yamada-Kondo S., Dev Growth Differ. September 1, 2022; 64 (7): 362-367.        


The myeloid lineage is required for the emergence of a regeneration-permissive environment following Xenopus tail amputation., Aztekin C., Development. February 5, 2020; 147 (3):                                     


Dissecting BMP signaling input into the gene regulatory networks driving specification of the blood stem cell lineage., Kirmizitas A., Proc Natl Acad Sci U S A. June 6, 2017; 114 (23): 5814-5821.                    


The cardiac-restricted protein ADP-ribosylhydrolase-like 1 is essential for heart chamber outgrowth and acts on muscle actin filament assembly., Smith SJ., Dev Biol. August 15, 2016; 416 (2): 373-88.                                                      


Identification of genes expressed in the migrating primitive myeloid lineage of Xenopus laevis., Agricola ZN., Dev Dyn. January 1, 2016; 245 (1): 47-55.                      


Changes in the inflammatory response to injury and its resolution during the loss of regenerative capacity in developing Xenopus limbs., Mescher AL., PLoS One. January 1, 2013; 8 (11): e80477.          


Hippo signaling components, Mst1 and Mst2, act as a switch between self-renewal and differentiation in Xenopus hematopoietic and endothelial progenitors., Nejigane S., Int J Dev Biol. January 1, 2013; 57 (5): 407-14.                      


Early cardiac morphogenesis defects caused by loss of embryonic macrophage function in Xenopus., Smith SJ., Mech Dev. January 1, 2011; 128 (5-6): 303-15.                            


Xenopus er71 is involved in vascular development., Neuhaus H., Dev Dyn. December 1, 2010; 239 (12): 3436-45.            


Fli1 acts at the top of the transcriptional network driving blood and endothelial development., Liu F., Curr Biol. August 26, 2008; 18 (16): 1234-40.                              


A role of D domain-related proteins in differentiation and migration of embryonic cells in Xenopus laevis., Shibata T., Mech Dev. January 1, 2008; 125 (3-4): 284-98.                            


Three matrix metalloproteinases are required in vivo for macrophage migration during embryonic development., Tomlinson ML., Mech Dev. January 1, 2008; 125 (11-12): 1059-70.                  


Characterization of myeloid cells derived from the anterior ventral mesoderm in the Xenopus laevis embryo., Tashiro S., Dev Growth Differ. October 1, 2006; 48 (8): 499-512.                    


Xenopus tropicalis peroxidasin gene is expressed within the developing neural tube and pronephric kidney., Tindall AJ., Dev Dyn. February 1, 2005; 232 (2): 377-84.  


XPOX2-peroxidase expression and the XLURP-1 promoter reveal the site of embryonic myeloid cell development in Xenopus., Smith SJ., Mech Dev. September 1, 2002; 117 (1-2): 173-86.                    


CaM kinase IV regulates lineage commitment and survival of erythroid progenitors in a non-cell-autonomous manner., Wayman GA., J Cell Biol. November 13, 2000; 151 (4): 811-24.                              

???pagination.result.page??? 1