Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (6278) Expression Attributions Wiki
XB-ANAT-475

Papers associated with primary germ layer (and foxc1)

Limit to papers also referencing gene:
Show all primary germ layer papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Mechanical Tensions Regulate Gene Expression in the Xenopus laevis Axial Tissues., Eroshkin FM., Int J Mol Sci. January 10, 2024; 25 (2):         


The Ribosomal Protein L5 Functions During Xenopus Anterior Development Through Apoptotic Pathways., Schreiner C., Front Cell Dev Biol. January 1, 2022; 10 777121.                        


Pinhead signaling regulates mesoderm heterogeneity via FGF receptor-dependent pathway., Ossipova O., Development. January 1, 2020;                                       


Lineage tracing of sclerotome cells in amphibian reveals that multipotent somitic cells originate from lateral somitic frontier., Della Gaspera B., Dev Biol. September 1, 2019; 453 (1): 11-18.        


Xenopus SOX5 enhances myogenic transcription indirectly through transrepression., Della Gaspera B., Dev Biol. October 15, 2018; 442 (2): 262-275.                    


Shared evolutionary origin of vertebrate neural crest and cranial placodes., Horie R., Nature. August 1, 2018; 560 (7717): 228-232.      


An analysis of MyoD-dependent transcription using CRISPR/Cas9 gene targeting in Xenopus tropicalis embryos., McQueen C., Mech Dev. August 1, 2017; 146 1-9.          


Using Xenopus to study genetic kidney diseases., Lienkamp SS., Semin Cell Dev Biol. March 1, 2016; 51 117-24.    


Paraxis is required for somite morphogenesis and differentiation in Xenopus laevis., Sánchez RS., Dev Dyn. August 1, 2015; 244 (8): 973-87.                              


The Wnt/JNK signaling target gene alcam is required for embryonic kidney development., Cizelsky W., Development. May 1, 2014; 141 (10): 2064-74.          


In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency., Gentsch GE., Cell Rep. September 26, 2013; 4 (6): 1185-96.                              


Early transcriptional targets of MyoD link myogenesis and somitogenesis., Maguire RJ., Dev Biol. November 15, 2012; 371 (2): 256-68.                                                    


Conservation and diversification of an ancestral chordate gene regulatory network for dorsoventral patterning., Kozmikova I., PLoS One. February 3, 2011; 6 (2): e14650.                  


Comparative gene expression analysis and fate mapping studies suggest an early segregation of cardiogenic lineages in Xenopus laevis., Gessert S., Dev Biol. October 15, 2009; 334 (2): 395-408.          


The role of FoxC1 in early Xenopus development., Cha JY., Dev Dyn. October 1, 2007; 236 (10): 2731-41.        


Genomic profiling of mixer and Sox17beta targets during Xenopus endoderm development., Dickinson K., Dev Dyn. February 1, 2006; 235 (2): 368-81.                        


Microarray-based identification of VegT targets in Xenopus., Taverner NV., Mech Dev. March 1, 2005; 122 (3): 333-54.                                          


Of Fox and Frogs: Fox (fork head/winged helix) transcription factors in Xenopus development., Pohl BS., Gene. January 3, 2005; 344 21-32.      


The forkhead genes, Foxc1 and Foxc2, regulate paraxial versus intermediate mesoderm cell fate., Wilm B., Dev Biol. July 1, 2004; 271 (1): 176-89.  


Expression pattern of the winged helix factor XFD-11 during Xenopus embryogenesis., Köster M., Mech Dev. August 1, 1998; 76 (1-2): 169-73.    

???pagination.result.page??? 1