Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2785) Expression Attributions Wiki
XB-ANAT-42

Papers associated with neuroectoderm (and hesx1)

Limit to papers also referencing gene:
Show all neuroectoderm papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Anterior patterning genes induced by Zic1 are sensitive to retinoic acid and its metabolite, 4-oxo-RA., Dubey A., Dev Dyn. March 1, 2022; 251 (3): 498-512.


Dach1 regulates neural crest migration during embryonic development., Kim YK., Biochem Biophys Res Commun. July 5, 2020; 527 (4): 896-901.        


Bioinformatics Screening of Genes Specific for Well-Regenerating Vertebrates Reveals c-answer, a Regulator of Brain Development and Regeneration., Korotkova DD., Cell Rep. October 22, 2019; 29 (4): 1027-1040.e6.                              


A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates., Plouhinec JL., PLoS Biol. October 19, 2017; 15 (10): e2004045.                                              


Early neural ectodermal genes are activated by Siamois and Twin during blastula stages., Klein SL., Genesis. May 1, 2015; 53 (5): 308-20.          


Xenopus mutant reveals necessity of rax for specifying the eye field which otherwise forms tissue with telencephalic and diencephalic character., Fish MB., Dev Biol. November 15, 2014; 395 (2): 317-330.                  


The extreme anterior domain is an essential craniofacial organizer acting through Kinin-Kallikrein signaling., Jacox L., Cell Rep. July 24, 2014; 8 (2): 596-609.                            


Ras-dva1 small GTPase regulates telencephalon development in Xenopus laevis embryos by controlling Fgf8 and Agr signaling at the anterior border of the neural plate., Tereshina MB., Biol Open. March 15, 2014; 3 (3): 192-203.                        


FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos., Murgan S., PLoS One. January 1, 2014; 9 (10): e110559.                              


Developmental mechanisms directing early anterior forebrain specification in vertebrates., Andoniadou CL., Cell Mol Life Sci. October 1, 2013; 70 (20): 3739-52.        


Novel functions of Noggin proteins: inhibition of Activin/Nodal and Wnt signaling., Bayramov AV., Development. December 1, 2011; 138 (24): 5345-56.              


HESX1- and TCF3-mediated repression of Wnt/β-catenin targets is required for normal development of the anterior forebrain., Andoniadou CL., Development. November 1, 2011; 138 (22): 4931-42.


Focal adhesion kinase protein regulates Wnt3a gene expression to control cell fate specification in the developing neural plate., Fonar Y., Mol Biol Cell. July 1, 2011; 22 (13): 2409-21.                  


Notch destabilises maternal beta-catenin and restricts dorsal-anterior development in Xenopus., Acosta H., Development. June 1, 2011; 138 (12): 2567-79.                          


Regulation of TCF3 by Wnt-dependent phosphorylation during vertebrate axis specification., Hikasa H., Dev Cell. October 19, 2010; 19 (4): 521-32.        


B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo., Okuda Y., PLoS Genet. May 6, 2010; 6 (5): e1000936.                


Mesodermal Wnt signaling organizes the neural plate via Meis3., Elkouby YM., Development. May 1, 2010; 137 (9): 1531-41.        


Xenopus Meis3 protein lies at a nexus downstream to Zic1 and Pax3 proteins, regulating multiple cell-fates during early nervous system development., Gutkovich YE., Dev Biol. February 1, 2010; 338 (1): 50-62.                  


A microarray screen for direct targets of Zic1 identifies an aquaporin gene, aqp-3b, expressed in the neural folds., Cornish EJ., Dev Dyn. May 1, 2009; 238 (5): 1179-94.                


Modulation of the beta-catenin signaling pathway by the dishevelled-associated protein Hipk1., Louie SH., PLoS One. January 1, 2009; 4 (2): e4310.                    


The LIM-domain protein Zyxin binds the homeodomain factor Xanf1/Hesx1 and modulates its activity in the anterior neural plate of Xenopus laevis embryo., Martynova NY., Dev Dyn. March 1, 2008; 237 (3): 736-49.  


The homeodomain factor Xanf represses expression of genes in the presumptive rostral forebrain that specify more caudal brain regions., Ermakova GV., Dev Biol. July 15, 2007; 307 (2): 483-97.        


Neural induction in Xenopus requires inhibition of Wnt-beta-catenin signaling., Heeg-Truesdell E., Dev Biol. October 1, 2006; 298 (1): 71-86.                    


Conserved regulatory elements establish the dynamic expression of Rpx/HesxI in early vertebrate development., Chou SJ., Dev Biol. April 15, 2006; 292 (2): 533-45.  


Ras-dva, a member of novel family of small GTPases, is required for the anterior ectoderm patterning in the Xenopus laevis embryo., Tereshina MB., Development. February 1, 2006; 133 (3): 485-94.  


The Vg1-related protein Gdf3 acts in a Nodal signaling pathway in the pre-gastrulation mouse embryo., Chen C., Development. January 1, 2006; 133 (2): 319-29.              


Multiple noggins in vertebrate genome: cloning and expression of noggin2 and noggin4 in Xenopus laevis., Eroshkin FM., Gene Expr Patterns. January 1, 2006; 6 (2): 180-6.              


The pro-apoptotic activity of a vertebrate Bar-like homeobox gene plays a key role in patterning the Xenopus neural plate by limiting the number of chordin- and shh-expressing cells., Offner N., Development. April 1, 2005; 132 (8): 1807-18.          


Systematic screening for genes specifically expressed in the anterior neuroectoderm during early Xenopus development., Takahashi N., Int J Dev Biol. January 1, 2005; 49 (8): 939-51.                                    


Xenopus laevis FoxE1 is primarily expressed in the developing pituitary and thyroid., El-Hodiri HM., Int J Dev Biol. January 1, 2005; 49 (7): 881-4.            


The homeodomain-containing transcription factor X-nkx-5.1 inhibits expression of the homeobox gene Xanf-1 during the Xenopus laevis forebrain development., Bayramov AV., Mech Dev. December 1, 2004; 121 (12): 1425-41.  


Patterning the forebrain: FoxA4a/Pintallavis and Xvent2 determine the posterior limit of Xanf1 expression in the neural plate., Martynova N., Development. May 1, 2004; 131 (10): 2329-38.  


Expression zones of three novel genes abut the developing anterior neural plate of Xenopus embryo., Novoselov VV., Gene Expr Patterns. May 1, 2003; 3 (2): 225-30.                              


Characterization of cis-regulatory elements of the homeobox gene Xanf-1., Eroshkin F., Gene. February 20, 2002; 285 (1-2): 279-86.


A morphogen gradient of Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus., Kiecker C., Development. November 1, 2001; 128 (21): 4189-201.              


Active repression of RAR signaling is required for head formation., Koide T., Genes Dev. August 15, 2001; 15 (16): 2111-21.            


The pitx2 homeobox protein is required early for endoderm formation and nodal signaling. ., Faucourt M., Dev Biol. January 15, 2001; 229 (2): 287-306.                


The role of Xenopus dickkopf1 in prechordal plate specification and neural patterning., Kazanskaya O., Development. November 1, 2000; 127 (22): 4981-92.              


Separation of neural induction and neurulation in Xenopus., Lallier TE., Dev Biol. September 1, 2000; 225 (1): 135-50.                


Requirement of Sox2-mediated signaling for differentiation of early Xenopus neuroectoderm., Kishi M., Development. February 1, 2000; 127 (4): 791-800.              


Differential onset of expression of mRNAs encoding proopiomelanocortin, prohormone convertases 1 and 2, and granin family members during Xenopus laevis development., Holling TM., Brain Res Mol Brain Res. January 10, 2000; 75 (1): 70-5.      


The homeobox gene, Xanf-1, can control both neural differentiation and patterning in the presumptive anterior neurectoderm of the Xenopus laevis embryo., Ermakova GV., Development. October 1, 1999; 126 (20): 4513-23.                  


A role for xGCNF in midbrain-hindbrain patterning in Xenopus laevis., Song K., Dev Biol. September 1, 1999; 213 (1): 170-9.            


Rearranging gastrulation in the name of yolk: evolution of gastrulation in yolk-rich amniote eggs., Arendt D., Mech Dev. March 1, 1999; 81 (1-2): 3-22.


Anterior specification of embryonic ectoderm: the role of the Xenopus cement gland-specific gene XAG-2., Aberger F., Mech Dev. March 1, 1998; 72 (1-2): 115-30.              


Wnt and FGF pathways cooperatively pattern anteroposterior neural ectoderm in Xenopus., McGrew LL., Mech Dev. December 1, 1997; 69 (1-2): 105-14.          


A novel marker of early epidermal differentiation: cDNA subtractive cloning starting on a single explant of Xenopus laevis gastrula epidermis., Vasiliev OL., Int J Dev Biol. December 1, 1997; 41 (6): 877-82.          


Anf: a novel class of vertebrate homeobox genes expressed at the anterior end of the main embryonic axis., Kazanskaya OV., Gene. October 24, 1997; 200 (1-2): 25-34.    


Misexpression of Cwnt8C in the mouse induces an ectopic embryonic axis and causes a truncation of the anterior neuroectoderm., Pöpperl H., Development. August 1, 1997; 124 (15): 2997-3005.


The role in neural patterning of translation initiation factor eIF4AII; induction of neural fold genes., Morgan R., Development. July 1, 1997; 124 (14): 2751-60.        

???pagination.result.page??? 1 2 ???pagination.result.next???