Results 1 - 12 of 12 results
FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos. , Murgan S., PLoS One. October 2, 2014; 9 (10): e110559.
The Xenopus doublesex-related gene Dmrt5 is required for olfactory placode neurogenesis. , Parlier D., Dev Biol. January 1, 2013; 373 (1): 39-52.
Mutual repression between Gbx2 and Otx2 in sensory placodes reveals a general mechanism for ectodermal patterning. , Steventon B ., Dev Biol. July 1, 2012; 367 (1): 55-65.
V-ATPase-dependent ectodermal voltage and pH regionalization are required for craniofacial morphogenesis. , Vandenberg LN ., Dev Dyn. August 1, 2011; 240 (8): 1889-904.
Genomic profiling of mixer and Sox17beta targets during Xenopus endoderm development. , Dickinson K., Dev Dyn. February 1, 2006; 235 (2): 368-81.
The zic1 gene is an activator of Wnt signaling. , Merzdorf CS ., Int J Dev Biol. January 1, 2006; 50 (7): 611-7.
Olfactory and lens placode formation is controlled by the hedgehog-interacting protein ( Xhip) in Xenopus. , Cornesse Y., Dev Biol. January 15, 2005; 277 (2): 296-315.
Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus. , Kuroda H ., PLoS Biol. May 1, 2004; 2 (5): E92.
The E3 ubiquitin ligase GREUL1 anteriorizes ectoderm during Xenopus development. , Borchers AG ., Dev Biol. November 15, 2002; 251 (2): 395-408.
The secreted glycoprotein Noelin-1 promotes neurogenesis in Xenopus. , Moreno TA ., Dev Biol. December 15, 2001; 240 (2): 340-60.
XBF-1, a winged helix transcription factor with dual activity, has a role in positioning neurogenesis in Xenopus competent ectoderm. , Bourguignon C., Development. December 1, 1998; 125 (24): 4889-900.
Xenopus Zic-related-1 and Sox-2, two factors induced by chordin, have distinct activities in the initiation of neural induction. , Mizuseki K., Development. February 1, 1998; 125 (4): 579-87.