Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (111) Expression Attributions Wiki
XB-ANAT-1565

Papers associated with optic chiasm

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Targeting of retinal axons requires the metalloproteinase ADAM10., Chen YY., J Neurosci. August 1, 2007; 27 (31): 8448-56.            


Cloning and expression of a zebrafish SCN1B ortholog and identification of a species-specific splice variant., Fein AJ., BMC Genomics. May 16, 2007; 8 226.                      


Neogenin interacts with RGMa and netrin-1 to guide axons within the embryonic vertebrate forebrain., Wilson NH., Dev Biol. August 15, 2006; 296 (2): 485-98.                      


Neuronal leucine-rich repeat 6 (XlNLRR-6) is required for late lens and retina development in Xenopus laevis., Wolfe AD., Dev Dyn. April 1, 2006; 235 (4): 1027-41.          


Repair of double-strand breaks by nonhomologous end joining in the absence of Mre11., Di Virgilio M., J Cell Biol. December 5, 2005; 171 (5): 765-71.        


Expression of a novel Ski-like gene in Xenopus development., Seufert DW., Gene Expr Patterns. December 1, 2005; 6 (1): 22-8.    


Neural and eye-specific defects associated with loss of the imitation switch (ISWI) chromatin remodeler in Xenopus laevis., Dirscherl SS., Mech Dev. November 1, 2005; 122 (11): 1157-70.          


Urochordate betagamma-crystallin and the evolutionary origin of the vertebrate eye lens., Shimeld SM., Curr Biol. September 20, 2005; 15 (18): 1684-9.  


Matrix metalloproteinases are required for retinal ganglion cell axon guidance at select decision points., Hehr CL., Development. August 1, 2005; 132 (15): 3371-9.            


Effect of 3-O-octanoyl-(+)-catechin on the responses of GABA(A) receptors and Na+/glucose cotransporters expressed in xenopus oocytes and on the oocyte membrane potential., Aoshima H., J Agric Food Chem. March 23, 2005; 53 (6): 1955-9.


Mouse reduced in osteosclerosis transporter functions as an organic anion transporter 3 and is localized at abluminal membrane of blood-brain barrier., Ohtsuki S., J Pharmacol Exp Ther. June 1, 2004; 309 (3): 1273-81.


New views on retinal axon development: a navigation guide., Mann F., Int J Dev Biol. January 1, 2004; 48 (8-9): 957-64.        


Xenopus laevis CB1 cannabinoid receptor: molecular cloning and mRNA distribution in the central nervous system., Cottone E., J Comp Neurol. September 29, 2003; 464 (4): 487-96.        


Ephrin-B2 and EphB1 mediate retinal axon divergence at the optic chiasm., Williams SE., Neuron. September 11, 2003; 39 (6): 919-35.


Increased expression of multiple neurofilament mRNAs during regeneration of vertebrate central nervous system axons., Gervasi C., J Comp Neurol. June 23, 2003; 461 (2): 262-75.            


Normal chiasmatic routing of uncrossed projections from the ventrotemporal retina in albino Xenopus frogs., Grant S., J Comp Neurol. April 14, 2003; 458 (4): 425-39.


Alpha-melanophore-stimulating hormone in the brain, cranial placode derivatives, and retina of Xenopus laevis during development in relation to background adaptation., Kramer BM., J Comp Neurol. January 27, 2003; 456 (1): 73-83.                  


Activin A induces craniofacial cartilage from undifferentiated Xenopus ectoderm in vitro., Furue M., Proc Natl Acad Sci U S A. November 26, 2002; 99 (24): 15474-9.    


Metalloproteases and guidance of retinal axons in the developing visual system., Webber CA., J Neurosci. September 15, 2002; 22 (18): 8091-100.                  


Vax2 inactivation in mouse determines alteration of the eye dorsal-ventral axis, misrouting of the optic fibres and eye coloboma., Barbieri AM., Development. February 1, 2002; 129 (3): 805-13.


Functional organization of the suprachiasmatic nucleus of Xenopus laevis in relation to background adaptation., Kramer BM., J Comp Neurol. April 9, 2001; 432 (3): 346-55.                    


Distinct roles of maf genes during Xenopus lens development., Ishibashi S., Mech Dev. March 1, 2001; 101 (1-2): 155-66.          


Pax genes in development and maturation of the vertebrate visual system: implications for optic nerve regeneration., Ziman MR., Histol Histopathol. January 1, 2001; 16 (1): 239-49.


Expression of the Xvax2 gene demarcates presumptive ventral telencephalon and specific visual structures in Xenopus laevis., Liu Y., Mech Dev. January 1, 2001; 100 (1): 115-8.                


An essential role of the neuronal cell adhesion molecule contactin in development of the Xenopus primary sensory system., Fujita N., Dev Biol. May 15, 2000; 221 (2): 308-20.                


Regulation of sgk by aldosterone and its effects on the epithelial Na(+) channel., Shigaev A., Am J Physiol Renal Physiol. April 1, 2000; 278 (4): F613-9.


Patterns of calretinin, calbindin, and tyrosine-hydroxylase expression are consistent with the prosomeric map of the frog diencephalon., Milán FJ., J Comp Neurol. March 27, 2000; 419 (1): 96-121.                  


Ephrin-B regulates the Ipsilateral routing of retinal axons at the optic chiasm., Nakagawa S., Neuron. March 1, 2000; 25 (3): 599-610.


A role for voltage-gated potassium channels in the outgrowth of retinal axons in the developing visual system., McFarlane S., J Neurosci. February 1, 2000; 20 (3): 1020-9.                  


A novel fork head gene mediates early steps during Xenopus lens formation., Kenyon KL., Development. November 1, 1999; 126 (22): 5107-16.            


Expression pattern of insulin receptor mRNA during Xenopus laevis embryogenesis., Groigno L., Mech Dev. August 1, 1999; 86 (1-2): 151-4.        


Identification of suprachiasmatic melanotrope-inhibiting neurons in Xenopus laevis: a confocal laser-scanning microscopy study., Ubink R., J Comp Neurol. July 20, 1998; 397 (1): 60-8.          


Vax1 is a novel homeobox-containing gene expressed in the developing anterior ventral forebrain., Hallonet M., Development. July 1, 1998; 125 (14): 2599-610.            


Overexpression of a novel Xenopus rel mRNA gene induces tumors in early embryos., Yang S., J Biol Chem. May 29, 1998; 273 (22): 13746-52.                


Melanopsin: An opsin in melanophores, brain, and eye., Provencio I., Proc Natl Acad Sci U S A. January 6, 1998; 95 (1): 340-5.        


Xefiltin, a Xenopus laevis neuronal intermediate filament protein, is expressed in actively growing optic axons during development and regeneration., Zhao Y., J Neurobiol. November 20, 1997; 33 (6): 811-24.                  


Xenopus laevis actin-depolymerizing factor/cofilin: a phosphorylation-regulated protein essential for development., Abe H., J Cell Biol. March 1, 1996; 132 (5): 871-85.                      


The optic tract and tectal ablation influence the composition of neurofilaments in regenerating optic axons of Xenopus laevis., Zhao Y., J Neurosci. June 1, 1995; 15 (6): 4629-40.                      


The return of phosphorylated and nonphosphorylated epitopes of neurofilament proteins to the regenerating optic nerve of Xenopus laevis., Zhao Y., J Comp Neurol. May 1, 1994; 343 (1): 158-72.


Identification and developmental expression of a novel low molecular weight neuronal intermediate filament protein expressed in Xenopus laevis., Charnas LR., J Neurosci. August 1, 1992; 12 (8): 3010-24.                      


Xlcaax-1 is localized to the basolateral membrane of kidney tubule and other polarized epithelia during Xenopus development., Cornish JA., Dev Biol. March 1, 1992; 150 (1): 108-20.                  


The switch from larval to adult globin gene expression in Xenopus laevis is mediated by erythroid cells from distinct compartments., Weber R., Development. August 1, 1991; 112 (4): 1021-9.              


The early development of the frog retinotectal projection., Taylor JS., Development. January 1, 1991; Suppl 2 95-104.            


The course of regenerating retinal axons in the frog chiasma: the influence of axons from the other eye., Taylor JS., Anat Embryol (Berl). January 1, 1990; 181 (4): 405-12.


The appearance of neural and glial cell markers during early development of the nervous system in the amphibian embryo., Messenger NJ., Development. September 1, 1989; 107 (1): 43-54.                      


A developmental and ultrastructural study of the optic chiasma in Xenopus., Wilson MA., Development. March 1, 1988; 102 (3): 537-53.


The restrictive effect of early exposure to lithium upon body pattern in Xenopus development, studied by quantitative anatomy and immunofluorescence., Cooke J., Development. January 1, 1988; 102 (1): 85-99.          


Specific cell surface labels in the visual centers of Xenopus laevis tadpole identified using monoclonal antibodies., Takagi S., Dev Biol. July 1, 1987; 122 (1): 90-100.                    


Fibre organization and reorganization in the retinotectal projection of Xenopus., Taylor JS., Development. March 1, 1987; 99 (3): 393-410.


Optic fibers follow aberrant pathways from rotated eyes in Xenopus laevis., Grant P., J Comp Neurol. August 15, 1986; 250 (3): 364-76.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 ???pagination.result.next???