Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3923) Expression Attributions Wiki
XB-ANAT-50

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

The role of fibroblast growth factors in early Xenopus development., Slack JM., Biochem Soc Symp. January 1, 1996; 62 1-12.


Activin-like signal activates dorsal-specific maternal RNA between 8- and 16-cell stages of Xenopus., Hainski AM., Dev Genet. January 1, 1996; 19 (3): 210-21.


Activation of the cardiac alpha-actin promoter depends upon serum response factor, Tinman homologue, Nkx-2.5, and intact serum response elements., Chen CY., Dev Genet. January 1, 1996; 19 (2): 119-30.


Dominant negative expression of a cytoplasmically deleted mutant of XB/U-cadherin disturbs mesoderm migration during gastrulation in Xenopus laevis., Kühl M., Mech Dev. January 1, 1996; 54 (1): 71-82.


The Xenopus homologue of hepatocyte growth factor-like protein is specifically expressed in the presumptive neural plate during gastrulation., Aberger F., Mech Dev. January 1, 1996; 54 (1): 23-37.                    


Endogenous retinoids in the zebrafish embryo and adult., Costaridis P., Dev Dyn. January 1, 1996; 205 (1): 41-51.


BMP-like signals are required after the midblastula transition for blood cell development., Zhang C., Dev Genet. January 1, 1996; 18 (3): 267-78.            


Competition between noggin and bone morphogenetic protein 4 activities may regulate dorsalization during Xenopus development., Re'em-Kalma Y., Proc Natl Acad Sci U S A. December 19, 1995; 92 (26): 12141-5.


Antagonizing the Spemann organizer: role of the homeobox gene Xvent-1., Gawantka V., EMBO J. December 15, 1995; 14 (24): 6268-79.


Molecular mechanisms of Spemann's organizer formation: conserved growth factor synergy between Xenopus and mouse., Watabe T., Genes Dev. December 15, 1995; 9 (24): 3038-50.


Magainin-induced cytotoxicity in eukaryotic cells: kinetics, dose-response and channel characteristics., Haimovich B., Biochim Biophys Acta. December 13, 1995; 1240 (2): 149-58.


Expression of L-type Ca2+ channel during early embryogenesis in Xenopus laevis., Drean G., Int J Dev Biol. December 1, 1995; 39 (6): 1027-32.          


Identification of a potential regulator of early transcriptional responses to mesoderm inducers in the frog embryo., Huang HC., EMBO J. December 1, 1995; 14 (23): 5965-73.


Modifications of current properties by expression of a foreign potassium channel gene in Xenopus embryonic cells., Spruce AE., J Membr Biol. December 1, 1995; 148 (3): 255-62.


Activation of smooth muscle alpha-actin promoter in ras-transformed cells by treatments with antimitotic agents: correlation with stimulation of SRF:SRE mediated gene transcription., Kumar CC., J Biochem. December 1, 1995; 118 (6): 1285-92.


A novel TGF-beta-like gene, fugacin, specifically expressed in the Spemann organizer of Xenopus., Ecochard V., Dev Biol. December 1, 1995; 172 (2): 699-703.      


Mesoderm-inducing factors and mesodermal patterning., Smith JC., Curr Opin Cell Biol. December 1, 1995; 7 (6): 856-61.


Activation mechanism and function of the MAP kinase cascade., Gotoh Y., Mol Reprod Dev. December 1, 1995; 42 (4): 486-92.


Differential effects of retinoic acid and a retinoid antagonist on the spatial distribution of the homeoprotein Hoxb-7 in vertebrate embryos., López SL., Dev Dyn. December 1, 1995; 204 (4): 457-71.      


Caudalization of neural fate by tissue recombination and bFGF., Cox WG., Development. December 1, 1995; 121 (12): 4349-58.                


Drosophila short gastrulation induces an ectopic axis in Xenopus: evidence for conserved mechanisms of dorsal-ventral patterning., Schmidt J., Development. December 1, 1995; 121 (12): 4319-28.                


Anti-dorsalizing morphogenetic protein is a novel TGF-beta homolog expressed in the Spemann organizer., Moos M., Development. December 1, 1995; 121 (12): 4293-301.                  


Induction of avian cardiac myogenesis by anterior endoderm., Schultheiss TM., Development. December 1, 1995; 121 (12): 4203-14.


Specific modulation of ectodermal cell fates in Xenopus embryos by glycogen synthase kinase., Itoh K., Development. December 1, 1995; 121 (12): 3979-88.              


Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction., Hawley SH., Genes Dev. December 1, 1995; 9 (23): 2923-35.                


Early expression of a novel radial glia antigen in the chick embryo., Prada FA., Glia. December 1, 1995; 15 (4): 389-400.


Vertical versus planar induction in amphibian early development., Nieuwkoop PD., Dev Growth Differ. December 1, 1995; 37 (6): 653-668.


The identification of two novel ligands of the FGF receptor by a yeast screening method and their activity in Xenopus development., Kinoshita N., Cell. November 17, 1995; 83 (4): 621-30.                  


Constitutive activation of fibroblast growth factor receptor-2 by a point mutation associated with Crouzon syndrome., Neilson KM., J Biol Chem. November 3, 1995; 270 (44): 26037-40.


Truncated type II receptor for BMP-4 induces secondary axial structures in Xenopus embryos., Ishikawa T., Biochem Biophys Res Commun. November 2, 1995; 216 (1): 26-33.    


The evolution of WT1 sequence and expression pattern in the vertebrates., Kent J., Oncogene. November 2, 1995; 11 (9): 1781-92.


Novel members of the eph receptor tyrosine kinase subfamily expressed during Xenopus development., Scales JB., Oncogene. November 2, 1995; 11 (9): 1745-52.


Induction of anteroposterior neural pattern in Xenopus: evidence for a quantitative mechanism., Doniach T., Mech Dev. November 1, 1995; 53 (3): 403-13.


tinman, a Drosophila homeobox gene required for heart and visceral mesoderm specification, may be represented by a family of genes in vertebrates: XNkx-2.3, a second vertebrate homologue of tinman., Evans SM., Development. November 1, 1995; 121 (11): 3889-99.                


The homeobox-containing gene XANF-1 may control development of the Spemann organizer., Zaraisky AG., Development. November 1, 1995; 121 (11): 3839-47.        


Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation., Jones CM., Development. November 1, 1995; 121 (11): 3651-62.                


Fibroblast growth factor is a direct neural inducer, which combined with noggin generates anterior-posterior neural pattern., Lamb TM., Development. November 1, 1995; 121 (11): 3627-36.          


Blastomere derivation and domains of gene expression in the Spemann Organizer of Xenopus laevis., Vodicka MA., Development. November 1, 1995; 121 (11): 3505-18.                  


Specification of the anteroposterior neural axis through synergistic interaction of the Wnt signaling cascade with noggin and follistatin., McGrew LL., Dev Biol. November 1, 1995; 172 (1): 337-42.    


BMP-4 regulates the dorsal-ventral differences in FGF/MAPKK-mediated mesoderm induction in Xenopus., Northrop J., Dev Biol. November 1, 1995; 172 (1): 242-52.            


Activin and its receptors during gastrulation and the later phases of mesoderm development in the chick embryo., Stern CD., Dev Biol. November 1, 1995; 172 (1): 192-205.


SCH 51344 inhibits ras transformation by a novel mechanism., Kumar CC., Cancer Res. November 1, 1995; 55 (21): 5106-17.


FGF signaling and target recognition in the developing Xenopus visual system., McFarlane S., Neuron. November 1, 1995; 15 (5): 1017-28.


The role of gsc and BMP-4 in dorsal-ventral patterning of the marginal zone in Xenopus: a loss-of-function study using antisense RNA., Steinbeisser H., EMBO J. November 1, 1995; 14 (21): 5230-43.


Establishment and movement of egg regions revealed by the size class of yolk platelets in Xenopus laevis., Imoh H., Rouxs Arch Dev Biol. November 1, 1995; 205 (3-4): 128-137.


Axis formation in zebrafish., Driever W., Curr Opin Genet Dev. October 1, 1995; 5 (5): 610-8.


Control of the embryonic body plan by activin during amphibian development., Ariizumi T., Zoolog Sci. October 1, 1995; 12 (5): 509-21.


Induction of a secondary embryonic axis in zebrafish occurs following the overexpression of beta-catenin., Kelly GM., Mech Dev. October 1, 1995; 53 (2): 261-73.


Mirror-image duplication of the primary axis and heart in Xenopus embryos by the overexpression of Msx-1 gene., Chen Y., J Exp Zool. October 1, 1995; 273 (2): 170-4.


Induction of notochord cell intercalation behavior and differentiation by progressive signals in the gastrula of Xenopus laevis., Domingo C., Development. October 1, 1995; 121 (10): 3311-21.

???pagination.result.page??? ???pagination.result.prev??? 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 ???pagination.result.next???