Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (332) Expression Attributions Wiki
XB-ANAT-3588

Papers associated with anterior commissure (and odc1)

Limit to papers also referencing gene:
Show all anterior commissure papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Genome-wide analysis of dorsal and ventral transcriptomes of the Xenopus laevis gastrula., Ding Y., Dev Biol. June 15, 2017; 426 (2): 176-187.                                  


A novel role for Ascl1 in the regulation of mesendoderm formation via HDAC-dependent antagonism of VegT., Gao L., Development. February 1, 2016; 143 (3): 492-503.                            


Kruppel-like factor family genes are expressed during Xenopus embryogenesis and involved in germ layer formation and body axis patterning., Gao Y., Dev Dyn. October 1, 2015; 244 (10): 1328-46.                                    


miR-34/449 control apical actin network formation during multiciliogenesis through small GTPase pathways., Chevalier B., Nat Commun. September 18, 2015; 6 8386.                


JmjC Domain-containing Protein 6 (Jmjd6) Derepresses the Transcriptional Repressor Transcription Factor 7-like 1 (Tcf7l1) and Is Required for Body Axis Patterning during Xenopus Embryogenesis., Zhang X., J Biol Chem. August 14, 2015; 290 (33): 20273-83.                      


Centrin-2 (Cetn2) mediated regulation of FGF/FGFR gene expression in Xenopus., Shi J., Sci Rep. May 27, 2015; 5 10283.                    


Heat shock 70-kDa protein 5 (Hspa5) is essential for pronephros formation by mediating retinoic acid signaling., Shi W., J Biol Chem. January 2, 2015; 290 (1): 577-89.                        


Carboxy terminus of GATA4 transcription factor is required for its cardiogenic activity and interaction with CDK4., Gallagher JM., Mech Dev. November 1, 2014; 134 31-41.            


APTE: identification of indirect read-out A-DNA promoter elements in genomes., Whitley DC., BMC Bioinformatics. August 26, 2014; 15 288.        


The Role of Sdf-1α signaling in Xenopus laevis somite morphogenesis., Leal MA., Dev Dyn. April 1, 2014; 243 (4): 509-26.                        


Xenopus embryonic epidermis as a mucociliary cellular ecosystem to assess the effect of sex hormones in a non-reproductive context., Castillo-Briceno P., Front Zool. February 6, 2014; 11 (1): 9.                


Differential expression of arid5b isoforms in Xenopus laevis pronephros., Le Bouffant R., Int J Dev Biol. January 1, 2014; 58 (5): 363-8.                


Role of Sp5 as an essential early regulator of neural crest specification in xenopus., Park DS., Dev Dyn. December 1, 2013; 242 (12): 1382-94.                


In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency., Gentsch GE., Cell Rep. September 26, 2013; 4 (6): 1185-96.                              


Role of the Rap2/TNIK kinase pathway in regulation of LRP6 stability for Wnt signaling., Park DS., Biochem Biophys Res Commun. June 28, 2013; 436 (2): 338-43.        


BMP signal attenuates FGF pathway in anteroposterior neural patterning., Cho GS., Biochem Biophys Res Commun. May 10, 2013; 434 (3): 509-15.        


β-Adrenergic signaling promotes posteriorization in Xenopus early development., Mori S., Dev Growth Differ. April 1, 2013; 55 (3): 350-8.            


Essential role of AWP1 in neural crest specification in Xenopus., Seo JH., Int J Dev Biol. January 1, 2013; 57 (11-12): 829-36.                  


The endocytic adapter E-Syt2 recruits the p21 GTPase activated kinase PAK1 to mediate actin dynamics and FGF signalling., Jean S., Biol Open. August 15, 2012; 1 (8): 731-8.          


TAK1 promotes BMP4/Smad1 signaling via inhibition of erk MAPK: a new link in the FGF/BMP regulatory network., Liu C., Differentiation. April 1, 2012; 83 (4): 210-9.                  


A hindbrain-repressive Wnt3a/Meis3/Tsh1 circuit promotes neuronal differentiation and coordinates tissue maturation., Elkouby YM., Development. April 1, 2012; 139 (8): 1487-97.                    


Expression of serotonergic system components during early Xenopus embryogenesis., Nikishin DA., Int J Dev Biol. January 1, 2012; 56 (5): 385-91.                          


mNanog possesses dorsal mesoderm-inducing ability by modulating both BMP and Activin/nodal signaling in Xenopus ectodermal cells., Miyazaki A., PLoS One. January 1, 2012; 7 (10): e46630.        


xCITED2 Induces Neural Genes in Animal Cap Explants of Xenopus Embryos., Yoon J., Exp Neurobiol. September 1, 2011; 20 (3): 123-9.        


Snail2 controls mesodermal BMP/Wnt induction of neural crest., Shi J., Development. August 1, 2011; 138 (15): 3135-45.                  


The involvement of Eph-Ephrin signaling in tissue separation and convergence during Xenopus gastrulation movements., Park EC., Dev Biol. February 15, 2011; 350 (2): 441-50.                          


Role of Tbx2 in defining the territory of the pronephric nephron., Cho GS., Development. February 1, 2011; 138 (3): 465-74.                        


Extended-synaptotagmin-2 mediates FGF receptor endocytosis and ERK activation in vivo., Jean S., Dev Cell. September 14, 2010; 19 (3): 426-39.              


Mesodermal Wnt signaling organizes the neural plate via Meis3., Elkouby YM., Development. May 1, 2010; 137 (9): 1531-41.        


XPteg (Xenopus proximal tubules-expressed gene) is essential for pronephric mesoderm specification and tubulogenesis., Lee SJ., Mech Dev. January 1, 2010; 127 (1-2): 49-61.                  


The posteriorizing gene Gbx2 is a direct target of Wnt signalling and the earliest factor in neural crest induction., Li B., Development. October 1, 2009; 136 (19): 3267-78.            


Xenopus Wntless and the retromer complex cooperate to regulate XWnt4 secretion., Kim H., Mol Cell Biol. April 1, 2009; 29 (8): 2118-28.  


The Xenopus Bowline/Ripply family proteins negatively regulate the transcriptional activity of T-box transcription factors., Hitachi K., Int J Dev Biol. January 1, 2009; 53 (4): 631-9.                    


Lrig3 regulates neural crest formation in Xenopus by modulating Fgf and Wnt signaling pathways., Zhao H., Development. April 1, 2008; 135 (7): 1283-93.                            


The myocardin-related transcription factor, MASTR, cooperates with MyoD to activate skeletal muscle gene expression., Meadows SM., Proc Natl Acad Sci U S A. February 5, 2008; 105 (5): 1545-50.        


Xenopus Lefty requires proprotein cleavage but not N-linked glycosylation to inhibit nodal signaling., Westmoreland JJ., Dev Dyn. August 1, 2007; 236 (8): 2050-61.        


Xenopus Dab2 is required for embryonic angiogenesis., Cheong SM., BMC Dev Biol. December 19, 2006; 6 63.                  


Xenopus embryos lacking specific isoforms of the corepressor SMRT develop abnormal heads., Malartre M., Dev Biol. April 15, 2006; 292 (2): 333-43.                    


Tsukushi controls ectodermal patterning and neural crest specification in Xenopus by direct regulation of BMP4 and X-delta-1 activity., Kuriyama S., Development. January 1, 2006; 133 (1): 75-88.            


SOX7 and SOX18 are essential for cardiogenesis in Xenopus., Zhang C., Dev Dyn. December 1, 2005; 234 (4): 878-91.                    


The Ca2+-induced methyltransferase xPRMT1b controls neural fate in amphibian embryo., Batut J., Proc Natl Acad Sci U S A. October 18, 2005; 102 (42): 15128-33.                


Xenopus X-box binding protein 1, a leucine zipper transcription factor, is involved in the BMP signaling pathway., Zhao H., Dev Biol. May 15, 2003; 257 (2): 278-91.          


In vitro induction and transplantation of eye during early Xenopus development., Sedohara A., Dev Growth Differ. January 1, 2003; 45 (5-6): 463-71.              


Imaging patterns of calcium transients during neural induction in Xenopus laevis embryos., Leclerc C., J Cell Sci. October 1, 2000; 113 Pt 19 3519-29.                  


FOG acts as a repressor of red blood cell development in Xenopus., Deconinck AE., Development. May 1, 2000; 127 (10): 2031-40.              

???pagination.result.page??? 1