Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (329) Attributions Wiki
XB-STAGE-13

Papers associated with NF stage 2 (2-cell)

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7

Sort Newest To Oldest Sort Oldest To Newest

Regulation of Spemann organizer formation by the intracellular kinase Xgsk-3., Pierce SB, Kimelman D., Development. March 1, 1995; 121 (3): 755-65.              


The Xenopus homologue of Otx2 is a maternal homeobox gene that demarcates and specifies anterior body regions., Pannese M, Polo C, Andreazzoli M, Vignali R, Kablar B, Barsacchi G, Boncinelli E., Development. March 1, 1995; 121 (3): 707-20.                      


Two distinct pathways for the localization of RNAs at the vegetal cortex in Xenopus oocytes., Kloc M, Etkin LD., Development. February 1, 1995; 121 (2): 287-97.              


Androgen directs sexual differentiation of laryngeal innervation in developing Xenopus laevis., Robertson JC, Watson JT, Kelley DB., J Neurobiol. December 1, 1994; 25 (12): 1625-36.


Overexpression of XMyoD or XMyf5 in Xenopus embryos induces the formation of enlarged myotomes through recruitment of cells of nonsomitic lineage., Ludolph DC, Neff AW, Mescher AL, Malacinski GM, Parker MA, Smith RC., Dev Biol. November 1, 1994; 166 (1): 18-33.                              


Expression and activity of p40MO15, the catalytic subunit of cdk-activating kinase, during Xenopus oogenesis and embryogenesis., Brown AJ, Jones T, Shuttleworth J., Mol Biol Cell. August 1, 1994; 5 (8): 921-32.              


Inhibition of activin receptor signaling promotes neuralization in Xenopus., Hemmati-Brivanlou A, Melton DA., Cell. April 22, 1994; 77 (2): 273-81.            


Regulation of primary erythropoiesis in the ventral mesoderm of Xenopus gastrula embryo: evidence for the expression of a stimulatory factor(s) in animal pole tissue., Maéno M, Ong RC, Xue Y, Nishimatsu S, Ueno N, Kung HF., Dev Biol. February 1, 1994; 161 (2): 522-9.


Translocation of repetitive RNA sequences with the germ plasm in Xenopus oocytes., Kloc M, Spohr G, Etkin LD., Science. December 10, 1993; 262 (5140): 1712-4.


Competence prepattern in the animal hemisphere of the 8-cell-stage Xenopus embryo., Kinoshita K, Bessho T, Asashima M., Dev Biol. November 1, 1993; 160 (1): 276-84.        


Distinct elements of the xsna promoter are required for mesodermal and ectodermal expression., Mayor R, Essex LJ, Bennett MF, Sargent MG., Development. November 1, 1993; 119 (3): 661-71.                  


Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis., Moon RT, Campbell RM, Christian JL, McGrew LL, Shih J, Fraser S., Development. September 1, 1993; 119 (1): 97-111.                  


Raf-1 kinase is essential for early Xenopus development and mediates the induction of mesoderm by FGF., MacNicol AM, Muslin AJ, Williams LT., Cell. May 7, 1993; 73 (3): 571-83.


Isolation and sequence of a cDNA encoding the precursor of a bombesinlike peptide from brain and early embryos of Xenopus laevis., Wechselberger C, Kreil G, Richter K., Proc Natl Acad Sci U S A. October 15, 1992; 89 (20): 9819-22.      


Evidence that Mos protein may not act directly on cyclin., Xu W, Ladner KJ, Smith LD., Proc Natl Acad Sci U S A. May 15, 1992; 89 (10): 4573-7.


Uptake and release of 63Ni2+ by Xenopus embryos during early cleavage stages., Sunderman FW, Mongillo FJ, Plowman MC, Brennan SM., Biol Met. January 1, 1990; 2 (4): 214-8.


The maternal store of the xlgv7 mRNA in full-grown oocytes is not required for normal development in Xenopus., Kloc M, Miller M, Carrasco AE, Eastman E, Etkin L., Development. December 1, 1989; 107 (4): 899-907.              


An analog of Xenopus N1N2 protein in Pleurodeles waltl., Moreau N, Lautredou N, Angelier N., Biol Cell. January 1, 1989; 67 (1): 19-26.


Observations on the mitochondrial distribution in normal, rotated and cold-treated 2-cell stage embryos of Xenopus laevis., Marinos E., Cell Differ. May 1, 1986; 18 (3): 163-71.


Dynamics of the control of body pattern in the development of Xenopus laevis. II. Timing and pattern in the development of single blastomeres (presumptive lateral halves) isolated at the 2-cell stage., Cooke J, Webber JA., J Embryol Exp Morphol. August 1, 1985; 88 113-33.


Pattern regulation in isolated halves and blastomeres of early Xenopus laevis., Kageura H, Yamana K., J Embryol Exp Morphol. April 1, 1983; 74 221-34.


A mosaicism in the higher order structure of Xenopus oocyte nucleolar chromatin prior to and during ribosomal gene transcription., Pruitt SC, Grainger RM., Cell. March 1, 1981; 23 (3): 711-20.


Germinal vesicle breakdown in the Xenopus laevis oocyte: description of a transient microtubular structure., Huchon D, Crozet N, Cantenot N, Ozon R., Reprod Nutr Dev. January 1, 1981; 21 (1): 135-48.


Protein synthesis and germ plasm in cleavage embryos of Xenopus laevis., Hogarth K, Dixon KE., J Exp Zool. December 1, 1976; 198 (3): 429-35.


New membrane formation and intercellular communication in the early Xenopus embryo. II. Theoretical analysis., de Laat SW, Barts PW., J Membr Biol. June 9, 1976; 27 (1-2): 131-51.


Mitosis in presumptive primordial germ cells in post-blastula embryos of Xenopus laevis., Dziadek M, Dixon KE., J Exp Zool. May 1, 1975; 192 (2): 285-91.


Effect of UV on cleavage of Xenopus laevis., Beal CM, Dixon KE., J Exp Zool. May 1, 1975; 192 (2): 277-83.


DNA synthesis during lens regeneration in larval Xenopus laevis., Waggoner PR, Reyer RW., J Exp Zool. April 1, 1975; 192 (1): 65-71.


Putrescine and spermidine biosynthesis in the development of normal and anucleolate mutants of Xenopus laevis., Russell DH., Proc Natl Acad Sci U S A. March 1, 1971; 68 (3): 523-7.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7