Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (174) Expression Attributions Wiki
XB-ANAT-3732

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Amino acid- vs. peptide-odorants: responses of individual olfactory receptor neurons in an aquatic species., Hassenklöver T., PLoS One. January 1, 2012; 7 (12): e53097.   


Origin and segregation of cranial placodes in Xenopus laevis., Pieper M., Dev Biol. December 15, 2011; 360 (2): 257-75.   


Chemokine ligand Xenopus CXCLC (XCXCLC) regulates cell movements during early morphogenesis., Goto T., Dev Growth Differ. December 1, 2011; 53 (9): 971-81.   


Involvement of Gα(olf)-expressing neurons in the vomeronasal system of Bufo japonicus., Hagino-Yamagishi K., J Comp Neurol. November 1, 2011; 519 (16): 3189-201.


Distinct axonal projections from two types of olfactory receptor neurons in the middle chamber epithelium of Xenopus laevis., Nakamuta S., Cell Tissue Res. October 1, 2011; 346 (1): 27-33.


The styryl dye FM1-43 suppresses odorant responses in a subset of olfactory neurons by blocking cyclic nucleotide-gated (CNG) channels., Breunig E., J Biol Chem. August 12, 2011; 286 (32): 28041-8.   


V-ATPase-dependent ectodermal voltage and pH regionalization are required for craniofacial morphogenesis., Vandenberg LN., Dev Dyn. August 1, 2011; 240 (8): 1889-904.   


Allosteric modulation of retinal GABA receptors by ascorbic acid., Calero CI., J Neurosci. June 29, 2011; 31 (26): 9672-82.


The location of olfactory receptors within olfactory epithelium is independent of odorant volatility and solubility., Abaffy T., BMC Res Notes. May 6, 2011; 4 137.   


Developmental changes in lectin-binding patterns of three nasal sensory epithelia in Xenopus laevis., Endo D., Anat Rec (Hoboken). May 1, 2011; 294 (5): 839-46.


Cloning and characterization of GABAA α subunits and GABAB subunits in Xenopus laevis during development., Kaeser GE., Dev Dyn. April 1, 2011; 240 (4): 862-73.   


Characterization of a novel type I keratin gene and generation of transgenic lines with fluorescent reporter genes driven by its promoter/enhancer in Xenopus laevis., Suzuki KT., Dev Dyn. December 1, 2010; 239 (12): 3172-81.   


Purinergic receptor-mediated Ca signaling in the olfactory bulb and the neurogenic area of the lateral ventricles., Hassenklöver T., Purinergic Signal. December 1, 2010; 6 (4): 429-45.   


Wnt/beta-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo., Tran HT., Proc Natl Acad Sci U S A. September 14, 2010; 107 (37): 16160-5.   


Odorant receptor from the southern house mosquito narrowly tuned to the oviposition attractant skatole., Hughes DT., J Chem Ecol. August 1, 2010; 36 (8): 797-800.   


The endocannabinoid 2-arachidonoyl-glycerol controls odor sensitivity in larvae of Xenopus laevis., Breunig E., J Neurosci. June 30, 2010; 30 (26): 8965-73.


An odorant receptor from the southern house mosquito Culex pipiens quinquefasciatus sensitive to oviposition attractants., Pelletier J., PLoS One. April 8, 2010; 5 (4): e10090.   


Endocannabinoid modulation in the olfactory epithelium., Breunig E., Results Probl Cell Differ. January 1, 2010; 52 139-45.


G protein-coupled receptor mediated trimethylamine sensing., Suska A., Biosens Bioelectron. December 15, 2009; 25 (4): 715-20.


Long-range retrograde spread of LTP and LTD from optic tectum to retina., Du JL., Proc Natl Acad Sci U S A. November 10, 2009; 106 (45): 18890-6.


Cloning and characterization of voltage-gated calcium channel alpha1 subunits in Xenopus laevis during development., Lewis BB., Dev Dyn. November 1, 2009; 238 (11): 2891-902.   


Heterogeneous distribution of G protein alpha subunits in the main olfactory and vomeronasal systems of Rhinella (Bufo) arenarum tadpoles., Jungblut LD., Zoolog Sci. October 1, 2009; 26 (10): 722-8.


Purinergic signaling regulates cell proliferation of olfactory epithelium progenitors., Hassenklöver T., Stem Cells. August 1, 2009; 27 (8): 2022-31.


Insect olfactory receptor complex functions as a ligand-gated ionotropic channel., Touhara K., Ann N Y Acad Sci. July 1, 2009; 1170 177-80.


Hemichannel-mediated and pH-based feedback from horizontal cells to cones in the vertebrate retina., Fahrenfort I., PLoS One. June 30, 2009; 4 (6): e6090.   


Highly specific responses to amine odorants of individual olfactory receptor neurons in situ., Gliem S., Eur J Neurosci. June 1, 2009; 29 (12): 2315-26.   


Developmental expression of retinoic acid receptors (RARs)., Dollé P., Nucl Recept Signal. May 12, 2009; 7 e006.   


Distribution pattern of neuropeptide Y in the brain, pituitary and olfactory system during the larval development of the toad Rhinella arenarum (Amphibia: Anura)., Heer T., Anat Histol Embryol. April 1, 2009; 38 (2): 89-95.


Formation and patterning of the forebrain and olfactory system by zinc-finger genes Fezf1 and Fezf2., Shimizu T., Dev Growth Differ. April 1, 2009; 51 (3): 221-31.


Cytoplasmic polyadenylation and cytoplasmic polyadenylation element-dependent mRNA regulation are involved in Xenopus retinal axon development., Lin AC., Neural Dev. March 2, 2009; 4 8.   


Early ontogeny of the olfactory organ in a basal actinopterygian fish: polypterus., Zeiske E., Brain Behav Evol. January 1, 2009; 73 (4): 259-72.


Nucleotide-induced Ca2+ signaling in sustentacular supporting cells of the olfactory epithelium., Hassenklöver T., Glia. November 15, 2008; 56 (15): 1614-24.


Expression study of cadherin7 and cadherin20 in the embryonic and adult rat central nervous system., Takahashi M., BMC Dev Biol. June 23, 2008; 8 87.   


Insect olfactory receptors are heteromeric ligand-gated ion channels., Sato K., Nature. April 24, 2008; 452 (7190): 1002-6.


Xenopus V1R vomeronasal receptor family is expressed in the main olfactory system., Date-Ito A., Chem Senses. April 1, 2008; 33 (4): 339-46.


Improved fluorescent (calcium indicator) dye uptake in brain slices by blocking multidrug resistance transporters., Manzini I., J Neurosci Methods. January 30, 2008; 167 (2): 140-7.


Phylogenic aspects of the amphibian dual olfactory system., Taniguchi K., J Vet Med Sci. January 1, 2008; 70 (1): 1-9.


Cloning and characterization of Xenopus dicalcin, a novel S100-like calcium-binding protein in Xenopus eggs., Miwa N., DNA Seq. October 1, 2007; 18 (5): 400-4.


Comprehensive interaction of dicalcin with annexins in frog olfactory and respiratory cilia., Uebi T., FEBS J. September 1, 2007; 274 (18): 4863-76.


Presynaptic protein distribution and odour mapping in glomeruli of the olfactory bulb of Xenopus laevis tadpoles., Manzini I., Eur J Neurosci. August 1, 2007; 26 (4): 925-34.   


A specific box switches the cell fate determining activity of XOTX2 and XOTX5b in the Xenopus retina., Onorati M., Neural Dev. June 27, 2007; 2 12.   


Response profiles to amino acid odorants of olfactory glomeruli in larval Xenopus laevis., Manzini I., J Physiol. June 1, 2007; 581 (Pt 2): 567-79.


Ptf1a triggers GABAergic neuronal cell fates in the retina., Dullin JP., BMC Dev Biol. May 31, 2007; 7 110.   


Cannabinoid action in the olfactory epithelium., Czesnik D., Proc Natl Acad Sci U S A. February 20, 2007; 104 (8): 2967-72.   


Spatial and temporal expression of the Grainyhead-like transcription factor family during murine development., Auden A., Gene Expr Patterns. October 1, 2006; 6 (8): 964-70.   


Stable knock-down of vomeronasal receptor genes in transgenic Xenopus tadpoles., Kashiwagi A., Biochem Biophys Res Commun. June 23, 2006; 345 (1): 140-7.   


Xenopus embryos lacking specific isoforms of the corepressor SMRT develop abnormal heads., Malartre M., Dev Biol. April 15, 2006; 292 (2): 333-43.   


Neuronal leucine-rich repeat 6 (XlNLRR-6) is required for late lens and retina development in Xenopus laevis., Wolfe AD., Dev Dyn. April 1, 2006; 235 (4): 1027-41.   


ATP activates both receptor and sustentacular supporting cells in the olfactory epithelium of Xenopus laevis tadpoles., Czesnik D., Eur J Neurosci. January 1, 2006; 23 (1): 119-28.   


3D atlas describing the ontogenic evolution of the primary olfactory projections in the olfactory bulb of Xenopus laevis., Gaudin A., J Comp Neurol. September 5, 2005; 489 (4): 403-24.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 ???pagination.result.next???