Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (10397) Expression Attributions Wiki
XB-ANAT-111

Papers associated with embryo

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Tissue specificity of 3'-untranslated sequence of myosin light chain gene: unexpected interspecies homology with repetitive DNA., Saidapet C., Arch Biochem Biophys. September 1, 1984; 233 (2): 565-72.


Patterns of junctional communication in the early amphibian embryo., Guthrie SC., Nature. September 13, 1984; 311 (5982): 149-51.


Antibodies to gap-junctional protein selectively disrupt junctional communication in the early amphibian embryo., Warner AE., Nature. September 13, 1984; 311 (5982): 127-31.


Small nuclear U-ribonucleoproteins in Xenopus laevis development. Uncoupled accumulation of the protein and RNA components., Fritz A., J Mol Biol. September 15, 1984; 178 (2): 273-85.


The mitochondrial cloud of Xenopus oocytes: the source of germinal granule material., Heasman J., Dev Biol. October 1, 1984; 105 (2): 458-69.


Fibre order in the normal Xenopus optic tract, near the chiasma., Fawcett JW., J Embryol Exp Morphol. October 1, 1984; 83 1-14.


Lineage segregation and developmental autonomy in expression of functional muscle acetylcholinesterase mRNA in the ascidian embryo., Meedel TH., Dev Biol. October 1, 1984; 105 (2): 479-87.


CNS effects of mechanically produced spina bifida., Katz MJ., Dev Med Child Neurol. October 1, 1984; 26 (5): 617-31.


Cell type-specific activation of actin genes in the early amphibian embryo., Mohun TJ., Nature. October 25, 1984; 311 (5988): 716-21.


beta-Endorphins (beta-EP) in amphibians: higher beta-EP levels during regenerating stages of anuran life cycle and immunocytochemical localization of beta-EP in regeneration blastemata., Vethamany-Globus S., J Exp Zool. November 1, 1984; 232 (2): 259-67.


The two embryonic U1 small nuclear RNAs of Xenopus laevis are encoded by a major family of tandemly repeated genes., Lund E., Mol Cell Biol. December 1, 1984; 4 (12): 2580-6.


Region-specific regulation of the actin multi-gene family in early amphibian embryos., Mohun TJ., Philos Trans R Soc Lond B Biol Sci. December 4, 1984; 307 (1132): 337-42.


Analysis of embryonic induction by using cell lineage markers., Slack JM., Philos Trans R Soc Lond B Biol Sci. December 4, 1984; 307 (1132): 331-6.


Localization and induction in early development of Xenopus., Gerhart JC., Philos Trans R Soc Lond B Biol Sci. December 4, 1984; 307 (1132): 319-30.


[Inductive effect of the eye tissues of adult clawed toads on the gastrula ectoderm]., Golubeva ON., Ontogenez. January 1, 1985; 16 (4): 389-97.


The effect of calcitonin on the prechordal mesoderm, neural plate and neural crest of Xenopus embryos., Burgess AM., J Anat. January 1, 1985; 140 ( Pt 1) 49-55.


The development of the dendritic organization of primary and secondary motoneurons in the spinal cord of Xenopus laevis. An HRP study., van Mier P., Anat Embryol (Berl). January 1, 1985; 172 (3): 311-24.


Alteration of the anterior-posterior embryonic axis: the pattern of gastrulation in macrocephalic frog embryos., Kao KR., Dev Biol. January 1, 1985; 107 (1): 239-51.


Fibronectin visualized by scanning electron microscopy immunocytochemistry on the substratum for cell migration in Xenopus laevis gastrulae., Nakatsuji N., Dev Biol. January 1, 1985; 107 (1): 264-8.


Does the amphibian eye have an ocular oxygen-concentrating mechanism?, Toews DP., Exp Biol. January 1, 1985; 43 (3): 179-82.


Germ plasm and germ cell determination in Xenopus laevis as studied by cell transplantation analysis., Wylie CC., Cold Spring Harb Symp Quant Biol. January 1, 1985; 50 37-43.


All components required for the eventual activation of muscle-specific actin genes are localized in the subequatorial region of an uncleaved amphibian egg., Gurdon JB., Proc Natl Acad Sci U S A. January 1, 1985; 82 (1): 139-43.


Growth cones of developing retinal cells in vivo, on culture surfaces, and in collagen matrices., Harris WA., J Neurosci Res. January 1, 1985; 13 (1-2): 101-22.


Fibrillarin: a new protein of the nucleolus identified by autoimmune sera., Ochs RL., Biol Cell. January 1, 1985; 54 (2): 123-33.


Biochemical specificity of Xenopus notochord., Smith JC., Differentiation. January 1, 1985; 29 (2): 109-15.          


Analysis of the activity of DNA, RNA, and protein synthesis inhibitors on Xenopus embryo development., Courchesne CL., Teratog Carcinog Mutagen. January 1, 1985; 5 (3): 177-93.


Specific changes in axonally transported proteins during regeneration of the frog (Xenopus laevis) optic nerve., Szaro BG., J Neurosci. January 1, 1985; 5 (1): 192-208.


In vitro translation of messenger RNA in a rabbit reticulocyte lysate cell-free system., Oliver CL., Methods Mol Biol. January 1, 1985; 2 145-55.


Localization of the factors producing the periodic activities responsible for synchronous cleavage in Xenopus embryos., Shinagawa A., J Embryol Exp Morphol. February 1, 1985; 85 33-46.


The expression of creatine kinase isozymes in Xenopus tropicalis, Xenopus laevis laevis, and their viable hybrid., Bürki E., Biochem Genet. February 1, 1985; 23 (1-2): 73-88.


The distribution of fibres in the optic tract after contralateral translocation of an eye in Xenopus., Taylor JS., J Embryol Exp Morphol. February 1, 1985; 85 225-38.


Nuclear-cytoplasmic interactions affecting DNA synthesis during induced cardiac muscle growth in the rat., Bugaisky LB., Cardiovasc Res. February 1, 1985; 19 (2): 89-94.


The development of the nucleus isthmi in Xenopus laevis. I. Cell genesis and the formation of connections with the tectum., Udin SB., J Comp Neurol. February 1, 1985; 232 (1): 25-35.


Occurrence of a species-specific nuclear antigen in the germ line of Xenopus and its expression from paternal genes in hybrid frogs., Wedlich D., Dev Biol. March 1, 1985; 108 (1): 220-34.                


Intertectal neuronal plasticity in Xenopus laevis: persistence despite catecholamine depletion., Udin SB., Dev Biol. March 1, 1985; 351 (1): 81-8.


Transformed Xenopus embryos as a transient expression system to analyze gene expression at the midblastula transition., Etkin LD., Dev Biol. March 1, 1985; 108 (1): 173-8.


Monoclonal antibodies prepared against the major Drosophila nuclear Matrix-pore complex-lamina glycoprotein bind specifically to the nuclear envelope in situ., Filson AJ., J Biol Chem. March 10, 1985; 260 (5): 3164-72.


Experimental control of the site of embryonic axis formation in Xenopus laevis eggs centrifuged before first cleavage., Black SD., Dev Biol. April 1, 1985; 108 (2): 310-24.


Effect of concanavalin A and vegetalizing factor on the outer and inner ectoderm layers of early gastrulae of Xenopus laevis after treatment with cytochalasin B., Grunz H., Cell Differ. April 1, 1985; 16 (2): 83-92.


Regulation in the neural plate of Xenopus laevis demonstrated by genetic markers., Szaro B., J Exp Zool. April 1, 1985; 234 (1): 117-29.


An elevated free cytosolic Ca2+ wave follows fertilization in eggs of the frog, Xenopus laevis., Busa WB., J Cell Biol. April 1, 1985; 100 (4): 1325-9.


Development of the ipsilateral retinothalamic projection in the frog Xenopus laevis. III. The role of thyroxine., Hoskins SG., J Neurosci. April 1, 1985; 5 (4): 930-40.


Development of the ipsilateral retinothalamic projection in the frog Xenopus laevis. I. Retinal distribution of ipsilaterally projecting cells in normal and experimentally manipulated frogs., Hoskins SG., J Neurosci. April 1, 1985; 5 (4): 911-9.


Stability and movement of mRNAs and their encoded proteins in Xenopus oocytes., Drummond DR., J Cell Biol. April 1, 1985; 100 (4): 1148-56.


Cell surface morphology of the morphogenetically active system of the embryo after treatment with tunicamycin, a glycosylation blocking drug., Nedvídek J., Histochem J. May 1, 1985; 17 (5): 529-31.


Peanut lectin receptors in the early amphibian embryo: regional markers for the study of embryonic induction., Slack JM., Cell. May 1, 1985; 41 (1): 237-47.


Changes in the nuclear lamina composition during early development of Xenopus laevis., Stick R., Cell. May 1, 1985; 41 (1): 191-200.                


Changes in levels of polymeric tubulin associated with activation and dorsoventral polarization of the frog egg., Elinson RP., Dev Biol. May 1, 1985; 109 (1): 224-33.


Cell type-specific expression of nuclear lamina proteins during development of Xenopus laevis., Benavente R., Cell. May 1, 1985; 41 (1): 177-90.                      


Spatial changes in poly(A) concentrations during early embryogenesis in Xenopus laevis: analysis by in situ hybridization., Phillips CR., Dev Biol. June 1, 1985; 109 (2): 299-310.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ???pagination.result.next???