Results 1 - 45 of 45 results
Ocular microvasculature in adult Xenopus laevis: Scanning electron microscopy of vascular casts. , Lametschwandtner A., J Morphol. March 1, 2023; 284 (3): e21561.
Characterizing the lens regeneration process in Pleurodeles waltl. , Tsissios G., Differentiation. January 1, 2023; 132 15-23.
The Tudor-domain protein TDRD7, mutated in congenital cataract, controls the heat shock protein HSPB1 (HSP27) and lens fiber cell morphology. , Barnum CE., Hum Mol Genet. July 29, 2020; 29 (12): 2076-2097.
Understanding cornea homeostasis and wound healing using a novel model of stem cell deficiency in Xenopus. , Adil MT., Exp Eye Res. October 1, 2019; 187 107767.
Lens regeneration from the cornea requires suppression of Wnt/ β-catenin signaling. , Hamilton PW., Exp Eye Res. April 1, 2016; 145 206-215.
Xenopus pax6 mutants affect eye development and other organ systems, and have phenotypic similarities to human aniridia patients. , Nakayama T ., Dev Biol. December 15, 2015; 408 (2): 328-44.
Multitarget super-resolution microscopy with high-density labeling by exchangeable probes. , Kiuchi T., Nat Methods. August 1, 2015; 12 (8): 743-6.
A novel mode of retinal regeneration: the merit of a new Xenopus model. , Araki M., Neural Regen Res. December 15, 2014; 9 (24): 2125-7.
Transgenic Xenopus laevis with the ef1-α promoter as an experimental tool for amphibian retinal regeneration study. , Ueda Y., Genesis. August 1, 2012; 50 (8): 642-50.
A mammalian melanopsin in the retina of a fresh water turtle, the red-eared slider (Trachemys scripta elegans). , Dearworth JR., Vision Res. January 28, 2011; 51 (2): 288-95.
Transdifferentiation from cornea to lens in Xenopus laevis depends on BMP signalling and involves upregulation of Wnt signalling. , Day RC., BMC Dev Biol. January 26, 2011; 11 54.
Molecular and cellular aspects of amphibian lens regeneration. , Henry JJ ., Prog Retin Eye Res. November 1, 2010; 29 (6): 543-55.
Towards monitoring transport of single cargos across individual nuclear pore complexes by time-lapse atomic force microscopy. , Huang NP., J Struct Biol. August 1, 2010; 171 (2): 154-62.
Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms. , Beck CW ., Dev Dyn. June 1, 2009; 238 (6): 1226-48.
Retinal regeneration in the Xenopus laevis tadpole: a new model system. , Vergara MN., Mol Vis. May 18, 2009; 15 1000-13.
Control of kidney, eye and limb expression of Bmp7 by an enhancer element highly conserved between species. , Adams D., Dev Biol. November 15, 2007; 311 (2): 679-90.
Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina. , Yoshii C., Dev Biol. March 1, 2007; 303 (1): 45-56.
tBid mediated activation of the mitochondrial death pathway leads to genetic ablation of the lens in Xenopus laevis. , Du Pasquier D., Genesis. January 1, 2007; 45 (1): 1-10.
Requirement for betaB1-crystallin promoter of Xenopus laevis in embryonic lens development and lens regeneration. , Mizuno N., Dev Growth Differ. April 1, 2005; 47 (3): 131-40.
Parameters of drug antagonism: re-examination of two modes of functional competitive drug antagonism on intraocular muscles. , Patil PN., J Pharm Pharmacol. August 1, 2004; 56 (8): 1045-53.
FGF2 triggers iris-derived lens regeneration in newt eye. , Hayashi T., Mech Dev. June 1, 2004; 121 (6): 519-26.
Eye regeneration at the molecular age. , Del Rio-Tsonis K ., Dev Dyn. February 1, 2003; 226 (2): 211-24.
Melatonin receptor mRNA and protein expression in Xenopus laevis nonpigmented ciliary epithelial cells. , Wiechmann AF ., Exp Eye Res. November 1, 2001; 73 (5): 617-23.
Pax genes in development and maturation of the vertebrate visual system: implications for optic nerve regeneration. , Ziman MR., Histol Histopathol. January 1, 2001; 16 (1): 239-49.
Structure, biological activity of the upstream regulatory sequence, and conserved domains of a middle molecular mass neurofilament gene of Xenopus laevis. , Roosa JR., Brain Res Mol Brain Res. October 20, 2000; 82 (1-2): 35-51.
Fluorescent photoreceptors of transgenic Xenopus laevis imaged in vivo by two microscopy techniques. , Moritz OL ., Invest Ophthalmol Vis Sci. December 1, 1999; 40 (13): 3276-80.
Pax-6 and Prox 1 expression during lens regeneration from Cynops iris and Xenopus cornea: evidence for a genetic program common to embryonic lens development. , Mizuno N., Differentiation. November 1, 1999; 65 (3): 141-9.
Calcium-mediated structural changes of native nuclear pore complexes monitored by time-lapse atomic force microscopy. , Stoffler D., J Mol Biol. April 9, 1999; 287 (4): 741-52.
Lens regeneration in Xenopus is not a mere repeat of lens development, with respect to crystallin gene expression. , Mizuno N., Differentiation. March 1, 1999; 64 (3): 143-9.
Transgene expression in Xenopus rods. , Knox BE ., FEBS Lett. February 20, 1998; 423 (2): 117-21.
Melanopsin: An opsin in melanophores, brain, and eye. , Provencio I., Proc Natl Acad Sci U S A. January 6, 1998; 95 (1): 340-5.
Alternative splicing of Pax6 in bovine eye and evolutionary conservation of intron sequences. , Jaworski C., Biochem Biophys Res Commun. November 7, 1997; 240 (1): 196-202.
Hedgehog and patched gene expression in adult ocular tissues. , Takabatake T., FEBS Lett. June 30, 1997; 410 (2-3): 485-9.
Hyaluronan synthase immunoreactivity in the anterior segment of the primate eye. , Rittig M., Graefes Arch Clin Exp Ophthalmol. June 1, 1993; 231 (6): 313-7.
Ocular malformations of Xenopus laevis exposed to nickel during embryogenesis. , Hauptman O., Ann Clin Lab Sci. January 1, 1993; 23 (6): 397-406.
EP-cadherin in muscles and epithelia of Xenopus laevis embryos. , Levi G., Development. December 1, 1991; 113 (4): 1335-44.
Transdifferentiation of larval Xenopus laevis iris under the influence of the pituitary. , Cioni C., Experientia. October 15, 1990; 46 (10): 1078-80.
Fibronectin distribution during cell type conversion in newt lens regeneration. , Elgert KL., Anat Embryol (Berl). January 1, 1989; 180 (2): 131-42.
Transdifferentiation of ocular tissues in larval Xenopus laevis. , Bosco L., Differentiation. November 1, 1988; 39 (1): 4-15.
Whole eyes reconstituted from embryonic half anlagen: alterations in donor-derived territories in Xenopus pigment chimerae. , Conway KM., J Exp Zool. November 1, 1987; 244 (2): 231-41.
Cell patterning in pigment-chimeric eyes in Xenopus: germinal transplants and their contributions to growth of the pigmented retinal epithelium. , Hunt RK., Proc Natl Acad Sci U S A. May 1, 1987; 84 (10): 3302-6.
[Radioautographic study of the cell proliferation of the pigment epithelium of the retina in albino clawed frogs]. , Svistunov SA., Ontogenez. January 1, 1983; 14 (4): 382-9.
Experimental analysis of the lens-forming competence of the cornea, iris, and retina in Xenopus laevis tadpoles. , Bosco L., J Exp Zool. May 1, 1981; 216 (2): 267-76.
Lens formation from cornea in the presence of the old lens in larval Xenopus laevis. , Bosco L., J Exp Zool. July 1, 1980; 213 (1): 9-14.
Ribosomal RNA synthesis in the Eastern North-American Newt, Notophthalmus viridescens. , Reese DH., Differentiation. January 14, 1977; 7 (2): 99-106.